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Version control
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“Version control is a system that records changes to a 
file or set of files over time so that you can recall specific 
versions later. ”

- Git Pro Book



Git, GitHub, GitLab, ...
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Git, GitHub, GitLab, ...
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Version control system
(software you run on your 
machine)

Online git 
hosting 
services
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“Fotos” de um diretório

Time

“Add files 1 and 2” “Change XYZ at file 1” “Join files 1 and 2”

File 1 File 2 File 1 File 2 File 1
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Pictures: Commits

Time

4b26a9 62fed0 07a3f1

● Author
● Date
● Description

● Author
● Date
● Description

● Author
● Date
● Description

parent parent
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What can I do with that?

● What changed between version X and Y?

● What does files A and B looked liked a month ago?

● Who last changed line L? Why?

● Which change introduced bug #21? Let's revert that.

● etc.
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File 1 File 2

Repository

Subdir

Working Tree Git Directory
(or Cache)

.git

Index
HEAD

past versions
…
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Adding and committing

File 1 File 2 File 1

git-add git-commit

File 1
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Working Tree

Staging
area

Commited

git-add git-commit

git-checkout

Tracked
files

Untracked
files

Git Directory

- File 1
- File 2
...

- File A
- File B
...

Adding and committing
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References
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References

main

HEAD
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Referências

main

HEAD

a02f3d 02fe29 872a12
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$ git commit

19f281



References

mainHEAD

a02f3d 02fe29 872a12
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$ git checkout 02fe29

19f281



References

mainHEAD

a02f3d 02fe29 872a12

1919

$ git checkout 02fe29

19f281

You are in “detached HEAD” state.
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$ git commit
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$ git commit

19f281
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$ git checkout main
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Git’s garbage collector

19f281

002ab2
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Git’s garbage collector

19f281
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$ git branch my-feat

19f281

my-feat
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main

HEAD
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$ git checkout my-feat

19f281

my-feat



References

main

HEAD

a02f3d 02fe29 872a12
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$ git commit

19f281

my-feat

b012d1



Let’s jump to the 
terminal
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Best commit practices
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Sounds like a good idea…

$ vim file.c

$ git add .

$ git commit -m “bla”
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… until you need to
recap what you did.

https://blog.tiagopariz.com/wp-content/uplo
ads/2018/10/jackie-chan-meme.png
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Dissecting a good commit

1. Unrelated changes belong to separate commits.

2. Avoid committing incomplete work.

3. Invest on writing informative commit messages.
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1. Unrelated changes belong to separate commits.

● Easier to review (better reviews → better codebase)

● Easier to revert

● Easier to merge with other changes and branches
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1. Unrelated changes belong to separate commits.



● Commits should be justified by themselves (although there can be 
dependencies among them).

● It’s nice to have each commit compilable and passing the tests 
(easier to find bugs and behavior changes)
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2. Avoid committing incomplete work



“a well-crafted Git commit message is the best way to communicate context 
about a change to fellow developers (and indeed to [your future self]). A diff 
will tell you what changed, but only the commit message can properly tell 
you why.”

- Chris Beams (https://chris.beams.io/posts/git-commit/)

3. Invest on writing informative commit messages
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● Describe the problem
What is not good in the codebase?

● Justify how your changes solve the problem
Why the codebase state is better after this patch?

● Discarded alternatives [optional]
Are there other ways to implement this? Why this was chosen?

Tip:
git commit -v ou

git config --global commit.verbose true
3737

3. Invest on writing informative commit messages



Example
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Remote

● A remote repository relative to the same project.

○ Backups in the cloud

○ Share code

○ Collaborative development

○ etc.
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Remote
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● Clone from remote:

○ $ git clone https://github.com/me/repo.git

● You may have multiple remotes inside the same repo

○ $ git remote add john https://github.com/john/repo.git

● Update remote branch:

○ $ git push <remote> <branch>

● Update local branch:

○ $ git pull <remote> <branch> 



Extra tips

● Exercising git: https://github.com/Gazler/githug

● Visualizing git: https://git-school.github.io/visualizing-git/  

● $ git help glossary

● $ git help revisions

● $ git blame / git log -S

● “man git ...” is your friend :)
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https://github.com/Gazler/githug
https://git-school.github.io/visualizing-git/


1. Pro Git, Scott Chacon and Ben Straub: 
https://git-scm.com/book/en/v2

2. Git Docs: https://git-scm.com/docs/
3. How to Write a Git Commit Message, 

Criss Beans: 
https://chris.beams.io/posts/git-commit/

4. Developer Tip: Keep Your Commits 
“Atomic”, Sean Patterson: 
https://www.freshconsulting.com/atomic-
commits/
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