Git 101

Matheus Tavares
matheustavares.qitlab.io

http://matheustavares.gitlab.io

Version control

“Version control is a system that records changes to a
file or set of files over time so that you can recall specific
versions later. "

- Git Pro Book

Git, GitHub, GitLab, ...

oy -

GitLab

Git, GitHub, GitLab, ...

Online git
hosting
services

k

Version control system

(software you run on your G I t La b

machine)

Time

Time

Time

“Add files 1and 2” “Change XYZ at file 1” “Join files 1 and 2”

Time

Pictures:

4b26a9 62fedO 07a3f1
— - parent — - parent — -
@ <« @ <« o
e Author e Author e Author
e Date e Date e Date
e Description e Description e Description

Time

What can | do with that?

e \What changed between version X and Y?
e \What does files A and B looked liked a month ago?

e \Who last changed line L? Why?

e Which change introduced bug #21? Let's revert that.

e etc.

10

Repository

Working Tree

Git Directory
(or Cache)

Index
HEAD

past versions

1

Adding and committing

git-add

12

Adding and committing

Working Tree

Tracked | Untracked

files files
-FileA | -File1 glt—dd
_FileB | -File2 | —7™
|
<+

Staging
area

Git Directory

— =

git-checkout

Commited

13

References

References

a02f3d 02fe29 872a12

15

References

a02f3d 02fe29

16

Referéncias

$ git commit

a02f3d 02fe29 872a12 2=

17

References

$ git checkout 02fe29

a02f3d

02fe29

872a12 ==

18

References

$ git checkout 02fe29

a02f3d

You are in “detached HEAD” state.

02fe29 872a12 g

e

References

$ git commit

a02f3d 02fe29 872a12 ;

20

References

$ git commit

a02f3d

02fe29

002ab2

21

References

$ git checkout main

a02f3d

02fe29

002ab2

22

Referéncias

Git’s garbage collector

a02f3d

02fe29

23

References

Git’s garbage collector

a02f3d 02fe29 872a12 2=

24

References

$ git branch my-feat

a02f3d 02fe29 872a12 2=

25

References

$ git checkout my-feat

a02f3d 02fe29 872a12 2=

e

26

References

$ git commit

a02f3d 02fe29 872a12 2=

e ©012d1

27

Let’s jump to the
terminal

Best commit practices

Sounds like a good idea...

$ vim file.c
$ git add .

$ git commit -m “bla”

30

... until you need to
recap what you did.

commit 5e2faaea3ldceaad23a3331cd9ad20afad6c719b
Author: joh123 <>

Minor changes

commit ae95825114ccac3a996251bd1ded4da5e83¢c95172
Author: joh123 <>

Fixed some bugs

commit 6e639b014182521138025091fac660cd2474b7a0
Author: joh123 <>

Now it compiles!

commit f717b52ddd1e95dbbdd5a1476051b842468cb195
Author: jonh123 <>

Actually it didn't. NOW IT DOES

commit 90384aec06d44a5d40d9c299f082334503943b32
Author: john123 <>

Update README

31

Dissecting a good commit

1. changes belong to commits.
2. incomplete work.

3. Invest on writing commit messages.

KY

1. Unrelated changes belong to separate commits.

e Easier to review (better reviews — better codebase)
e Easierto

e Easierto with other changes and branches

33

1. Unrelated changes belong to separate commits.

commit 157c64679f49c4be16c08ba683d0e79652c6cb70
Author: A U Thor <author@example.com>

Use 0 as default exit code and rename test files

34

2. Avoid committing incomplete work

e Commits should be justified by themselves (although there can be
dependencies among them).

e It's nice to have each commit compilable and passing the tests
(easier to find bugs and behavior changes)

35

3.

Invest on writing informative commit messages

“a well-crafted Git commit message is the best way to communicate context
about a change to fellow developers (and indeed to [your future self]). A diff
will tell you , but only the commit message can

Chris Beams (https://chris.beams.io/posts/git-commit/)

36

3.

Invest on writing informative commit messages

Describe the problem
What is not good in the codebase?

Justify how your changes solve the problem
Why the codebase state is better after this patch?

Discarded alternatives [optional]
Are there other ways to implement this? Why this was chosen?

Tip:
git commit -v ou
git config --global commit.verbose true

37

Example

commit 7655b4119d49844e6ebc62da571e5f18528dbde8
Author: René Scharfe <l.s.r@web.de>
Date: Tue Mar 3 21:55:34 2020 +0100

remote-curl: show progress for fetches over dumb HTTP

Fetching over dumb HTTP transport doesn't show any progress, even with
the option --progress. If the connection is slow or there is a lot of
data to get then this can take a long time while the user is left to
wonder if git got stuck.

We don't know the number of objects to fetch at the outset, but we can
count the ones we got. Show an open-ended progress indicator based on
that number if the user asked for it.

38

Remote

e A remote repository relative to the same project.
o Backups in the cloud
o Share code
o Collaborative development

o eftc.

89

Remote

Clone from remote:

@)

$ git clone https://github.com/me/repo.git

You may have multiple remotes inside the same repo

©)

$ git remote add john https://github.com/john/repo.git

Update remote branch:

@)

$ git push <remote> <branch>

Update local branch:

©)

$ git pull <remote> <branch>

40

Extra tips

e Exercising git: hitps://github.com/Gazler/qgithug

e Visualizing git: https://qit-school.github.io/visualizing-git/

e $ git help glossary
e $ git help revisions
e $ git blame / git log -S

e “man git...” is your friend :)

41

https://github.com/Gazler/githug
https://git-school.github.io/visualizing-git/

References

1. Pro Git, Scott Chacon and Ben Straub:
https://qit-scm.com/book/en/v2

2. Git Docs: https://qit-scm.com/docs/

3. How to Write a Git Commit Message,
Criss Beans:
https://chris.beams.io/posts/git-commit/

4. Developer Tip: Keep Your Commits
“Atomic”, Sean Patterson:
https://www.freshconsulting.com/atomic-

|

commits/

I
it
i
I

i |

l

UPPSALA UNIVERSITE

‘
: r;_!;

—— -

e T el
P

PRl ol e

42

https://git-scm.com/book/en/v2
https://git-scm.com/docs/
https://chris.beams.io/posts/git-commit/
https://www.freshconsulting.com/atomic-commits/
https://www.freshconsulting.com/atomic-commits/

