
Git 101

Matheus Tavares
matheustavares.gitlab.io

1

http://matheustavares.gitlab.io

Version control

22

“Version control is a system that records changes to a
file or set of files over time so that you can recall specific
versions later. ”

- Git Pro Book

Git, GitHub, GitLab, ...

33

Git, GitHub, GitLab, ...

44

Version control system
(software you run on your
machine)

Online git
hosting
services

55

Time

File 1 File 2

66

Time

File 1 File 2 File 1 File 2

77

Time

File 1 File 2 File 1 File 2 File 1

88

“Fotos” de um diretório

Time

“Add files 1 and 2” “Change XYZ at file 1” “Join files 1 and 2”

File 1 File 2 File 1 File 2 File 1

99

Pictures: Commits

Time

4b26a9 62fed0 07a3f1

● Author
● Date
● Description

● Author
● Date
● Description

● Author
● Date
● Description

parent parent

10

What can I do with that?

● What changed between version X and Y?

● What does files A and B looked liked a month ago?

● Who last changed line L? Why?

● Which change introduced bug #21? Let's revert that.

● etc.

1111

File 1 File 2

Repository

Subdir

Working Tree Git Directory
(or Cache)

.git

Index
HEAD

past versions
…

12

Adding and committing

File 1 File 2 File 1

git-add git-commit

File 1

1313

Working Tree

Staging
area

Commited

git-add git-commit

git-checkout

Tracked
files

Untracked
files

Git Directory

- File 1
- File 2
...

- File A
- File B
...

Adding and committing

References

1414

References

a02f3d 02fe29 872a12

1515

References

main

HEAD

a02f3d 02fe29 872a12

1616

Referências

main

HEAD

a02f3d 02fe29 872a12

1717

$ git commit

19f281

References

mainHEAD

a02f3d 02fe29 872a12

1818

$ git checkout 02fe29

19f281

References

mainHEAD

a02f3d 02fe29 872a12

1919

$ git checkout 02fe29

19f281

You are in “detached HEAD” state.

References

mainHEAD

a02f3d 02fe29 872a12

2020

$ git commit

19f281

References

main

HEAD

a02f3d 02fe29 872a12

2121

$ git commit

19f281

002ab2

References

main

HEAD

a02f3d 02fe29 872a12

2222

$ git checkout main

19f281

002ab2

Referências

main

HEAD

a02f3d 02fe29 872a12

2323

Git’s garbage collector

19f281

002ab2

References

main

HEAD

a02f3d 02fe29 872a12

2424

Git’s garbage collector

19f281

References

main

HEAD

a02f3d 02fe29 872a12

2525

$ git branch my-feat

19f281

my-feat

References

main

HEAD

a02f3d 02fe29 872a12

2626

$ git checkout my-feat

19f281

my-feat

References

main

HEAD

a02f3d 02fe29 872a12

2727

$ git commit

19f281

my-feat

b012d1

Let’s jump to the
terminal

2828

Best commit practices

2929

Sounds like a good idea…

$ vim file.c

$ git add .

$ git commit -m “bla”

3030

… until you need to
recap what you did.

https://blog.tiagopariz.com/wp-content/uplo
ads/2018/10/jackie-chan-meme.png

3131

Dissecting a good commit

1. Unrelated changes belong to separate commits.

2. Avoid committing incomplete work.

3. Invest on writing informative commit messages.

3232

1. Unrelated changes belong to separate commits.

● Easier to review (better reviews → better codebase)

● Easier to revert

● Easier to merge with other changes and branches

3333

3434

1. Unrelated changes belong to separate commits.

● Commits should be justified by themselves (although there can be
dependencies among them).

● It’s nice to have each commit compilable and passing the tests
(easier to find bugs and behavior changes)

3535

2. Avoid committing incomplete work

“a well-crafted Git commit message is the best way to communicate context
about a change to fellow developers (and indeed to [your future self]). A diff
will tell you what changed, but only the commit message can properly tell
you why.”

- Chris Beams (https://chris.beams.io/posts/git-commit/)

3. Invest on writing informative commit messages

3636

● Describe the problem
What is not good in the codebase?

● Justify how your changes solve the problem
Why the codebase state is better after this patch?

● Discarded alternatives [optional]
Are there other ways to implement this? Why this was chosen?

Tip:
git commit -v ou

git config --global commit.verbose true
3737

3. Invest on writing informative commit messages

Example

3838

Remote

● A remote repository relative to the same project.

○ Backups in the cloud

○ Share code

○ Collaborative development

○ etc.

3939

Remote

4040

● Clone from remote:

○ $ git clone https://github.com/me/repo.git

● You may have multiple remotes inside the same repo

○ $ git remote add john https://github.com/john/repo.git

● Update remote branch:

○ $ git push <remote> <branch>

● Update local branch:

○ $ git pull <remote> <branch>

Extra tips

● Exercising git: https://github.com/Gazler/githug

● Visualizing git: https://git-school.github.io/visualizing-git/

● $ git help glossary

● $ git help revisions

● $ git blame / git log -S

● “man git ...” is your friend :)

4141

https://github.com/Gazler/githug
https://git-school.github.io/visualizing-git/

1. Pro Git, Scott Chacon and Ben Straub:
https://git-scm.com/book/en/v2

2. Git Docs: https://git-scm.com/docs/
3. How to Write a Git Commit Message,

Criss Beans:
https://chris.beams.io/posts/git-commit/

4. Developer Tip: Keep Your Commits
“Atomic”, Sean Patterson:
https://www.freshconsulting.com/atomic-
commits/

References

4242

https://git-scm.com/book/en/v2
https://git-scm.com/docs/
https://chris.beams.io/posts/git-commit/
https://www.freshconsulting.com/atomic-commits/
https://www.freshconsulting.com/atomic-commits/

