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Resumo

Matheus Tavares Bernardino. Paralelizando o Git Checkout: um Estudo de Caso
sobre Paralelismo de E/S em Aplicacdes Desktop. Dissertaciao (Mestrado). Instituto

de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2022.

Sistemas de controle de versdes (SCV) sdo ferramentas que monitoraram e gerenciam as alteracdes
feitas em um conjunto de arquivos ao longo do tempo. De forma mais abrangente, SCVs também podem
contribuir para moldar e gerir fluxos de colaboracdo, encontrar e corrigir bugs, relembrar as motivacdes
por tras de determinada alteracdo de codigo, etc. Apesar de tipicamente poderem monitorar qualquer tipo
de dados, sistemas de controle de versio trazem beneficios importantissimos para projetos de software e,
com isso, se tornaram pratica padrio neste campo. Dentre as ferramentas de SCV disponiveis atualmente,
o Git é o mais popular entre desenvolvedores. A ferramenta é utilizada hoje para versionar desde pequenos
projetos pessoais, com alguns megabytes de tamanho, até repositorios corporativos massivos com mais de
300 GB e 3,5 milhdes de arquivos. Por esse motivo, velocidade e escalabilidade estdo entre as principais
prioridades para a comunidade de desenvolvimento do Git. No entanto, o desempenho da ferramenta por
vezes se encontra aquém do desejado em sistemas de arquivos em rede (NFS), onde operacdes de entrada
e saida (E/S) costumam ser mais custosas. Em particular, uma operacéo do Git que sofre com estes custos
é o checkout, que é responsavel por restaurar arquivos de versdes especificas de um projeto. Diversas oti-
mizacdes foram empregadas em codigos relacionados a operacgdo de checkout ao longo do tempo, mas o
processamento sequencial dos arquivos ainda trazia uma penalidade de tempo grande para NFS, além de
ser subotimo para sistemas de arquivo locais em SSDs. Neste projeto, trabalhamos para paralelizar o maqui-
nario de checkout do Git, resultando em speedups de até 4,5x em NFS e 3,6x em SSDs. Também estudamos
como o paralelismo afeta as tarefas de E/S realizadas pela operacdo de checkout em diferentes maquinas
e dispositivos de armazenamento. A funcionalidade de checkout paralelo foi incorporada ao repositério
upstream do Git e disponibilizada para todos os usuarios da ferramenta na sua versio 2.32.0, que foi lancada
em Junho de 2021.

Palavras-chave: Programacéo Paralela. Git. Sistemas de Controle de Versoes. Sistemas de Arquivos em

Rede. Paralelismo em E/S.






Abstract

Matheus Tavares Bernardino. Parallelizing Git Checkout: a Case Study of I/O Par-
allelism on Desktop Applications. Thesis (Master’s). Institute of Mathematics and

Statistics, University of Sao Paulo, Sdo Paulo, 2022.

A version control system (VCS) is a tool that tracks and manages the changes made to a set of files
over time. More broadly, VCS tools can also help to shape and manage collaboration flows, find and fix
bugs, remember the motivations behind a given code change, etc. Although these tools can typically track
any type of data, version control systems bring huge benefits to software projects and, as a result, have
become standard practice in this field. Among the VCS tools available today, Git is the most popular among
developers. This tool is currently being used to version control a variety of repositories, from small personal
projects of a few megabytes in size to massive corporate repositories with more than 300 GB and 3.5 million
files. For that reason, speed and scalability are among the top priorities for the Git development community.
However, the performance of the tool sometimes falls short of what is desired on networked file systems
(NFS), where input and output (I/O) operations tend to be more costly. In particular, one Git operation
that suffers from these costs is checkout, which is responsible for restoring files from specific versions of a
project. Various optimizations were employed on code related to the checkout operation over the years, but
the sequential processing of files still carried a large time penalty for NFS, as well as being suboptimal for
local file systems on SSDs. In this project, we worked to parallelize the Git checkout machinery, resulting
in speedups of up to 4.5x on NFS and 3.6x on SSDs. We also study how parallelism affects the I/O tasks
performed by the checkout operation on different machines and storage devices. The parallel checkout
feature was incorporated into the upstream Git repository and made available to all users of the tool since

version 2.32.0, which was released in June 2021.

Keywords: Parallel Programming. Git. Version Control Systems. Network File Systems. Parallel I/O.
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Chapter 1

Introduction

1.1 Version Control Systems

A version control system (VCS) is “a system that records changes to a file or set of files
over time so that you can recall specific versions later” (CHACON and STRAUB, 2014). These
systems manage and store the history of a project as it evolves, not only allowing the
future study of historical changes but also the present coordination of parallel changes
that are made by different authors. Among the many features that a VCS can provide today,
some of the core functionalities are: the creation of a new version with some description
of the changes, the retrieval of one or more file(s) contents as they were at a specific
version, the summary of differences among any two versions, and the visualization of the
project’s history.

The files of a project versioned by a VCS usually live in what is called a repository,
where many other important metadata is also stored. Repositories can typically hold (i.e.
version control) any type of data, not limited to source code. Nevertheless, version control
tools are often associated with software engineering as it has become widely used in this
field (NURLIsA et al., 2018), (SPINELLIS, 2005) (OTTE, 2009). So much so that VCS tools like
Git are also referred as a source control management (SCM). Version control systems con-
stitute a very important element of the software development tool chain, and paramount
when working with a large team of developers, as it “supports a collaborative framework
that makes it easy for software developers to work together effectively” (NURLISA et al., 2018).
Nevertheless, version control has many benefits for small teams and individual contribu-
tors too. Being able to recall when a code change was made (and more importantly: “why”
a change was made) helps developers on their decisions about future changes in the same
area, as well as locating and fixing bugs. The history of a project as provided by a VCS
can also be of great assistance to future developers, as they can study how specific pieces
of code came to be.

There are two major types of VCS: centralized version control systems (CVCS) and
decentralized version control systems (DVCS). The first category includes the systems
where there is one centralized repository on a server and the users interact with it through
the network. The second category defines the systems where each user has its own full
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copy of the repository locally. Some examples of well known CVCS are CVS (CVS, 2022),
Subversion (APAcHE, 2022), and Perforce’s Helix Core (PERFORCE, 2022), while popular
DVCS tools include Git (GiT DEVELOPMENT COMMUNITY, 2022), Mercurial (MERCURIAL,
2022), and Bazaar (THE BazAaAR TEAM, 2022). Each model of version control system has its
own advantages, but DVCS are commonly acknowledge for the robustness of not having
a single point of failure. On the other hand, many users of DVCS still employ some kind
of centralization by pointing one repository as the single “source of truth”.

1.2 Git

Git is a decentralized open source version control system. It was created in 2005 by
Linus Torvalds to fill a gap inside the Linux kernel community after the proprietary VCS
that they had been using until then, BitKeeper, got its free license revoked. Linus and other
contributors started looking for alternatives, but none of them seemed to fully meet the
requirements of the project and its contributors at that time. In the meantime, Linus de-
cided to work on a set of scripts that would serve him as “a fallback [...] if nothing out there
works right now” (TorvALDs, 2005). With about one day, the “distribution and archival
mechanism”, as Linus first put it, was able to host itself, and about 10 days later it was
used to make the first Linux commit (THE LiNnux FounpaTion and TorvALDSs, 2014). With
the help of other contributors who liked the idea and engaged in the early development,
Git got its v1.0.0 released about eight months later.

As mentioned in the Pro Git book (CHAcoN and STRAUB, 2014), some of the initial
goals for the software were:

« Speed

Simple design

Strong support for non-linear development (thousands of parallel
branches)

Fully distributed

Able to handle large projects like the Linux kernel efficiently (speed and
data size)

Git has quickly gained popularity and, by 2006, other open source projects were using
it to version control their code, like: Cairo, Gnumeric, Wine, xmms2, and the X.org X
server (HamaNoO, 2006). In the following years many more projects adopted Git as their
VCS, and thanks to services like GitHub (launched in 2008) and Gitlab (launched in 2011),
it became very easy for anyone to host their Git repositories online. Today, Git has become
the most popular VCS for source code management. 2018’s Stack Overflow Developer
Survey showed that almost 90% of the interviewed developers were versioning their code
through Git (Stack EXCHANGE, INC., 2018a). 2021’s edition showed that over 93% of the
respondents have done extensively development work in Git during the past year and
about 89% want to work with Git in the next year (STACKk EXCHANGE, INC., 2018b).

To this date, approximately 1900 people have contributed to the Git project with about
50000 accepted patches. Junio Hamano has been the maintainer since 2005.
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1.3 Motivation and Goal

Checkout is the Git operation responsible for restoring specific versions of one or
more files in a repository. It is a core operation for a version control system, allowing its
users to switch between different snapshots of the project, discarding unwanted changes,
testing alternative versions, etc. Besides the homonymous git checkout command, the
checkout machinery is used by many other Git commands like: clone, reset, switch,
restore, and merge.

Checkout is usually a fast operation when updating a small number of files, but per-
formance can become a problem as the workload grows. This is specially critical for Git
users over networked file systems; which, due to the higher I/O latencies, may experience
some checkout commands taking up to 50x or even 130x more time than local file systems.
To put it into perspective, a full checkout of the Linux repository (which contains over
70K files), takes around 8 seconds on a local Linux machine with SSD, but it can take 5 to
15 minutes on network file systems. Furthermore, Linux is not even the largest repository
versioned through Git: the Chromium repository has over 300K files, and Windows has
over 3.5M (Harry, 2017).

With that in mind, our goal with this project is to parallelize the working tree up-
date phase of checkout to improve its performance for large workloads, specially
over NFS. During this work, we aim to answers the following research questions:

« RQ1: Which are the most time-consuming operations at checkout, and why?

RQ2: How does the underlying storage type (SSD, HDD, and NFS) influence se-
quential and parallel checkout performance?

« RQ3: What performance gain can we get by parallelizing I/O-heavy desktop code,
like git checkout?

« RQ4: How does parallelizing checkout impacts memory usage?

We hope that the discussions around these questions will help other developers work-
ing with parallelism of programs that have intensive I/O requirements, like checkout. Our
main contribution with this work is the implementation of the parallel checkout frame-
work, which resulted in speedups of up to 3.6x on SSDs and 4.5x on NFS in our check-
out benchmarks using the Linux repository. The feature was merged into the upstream
project and released to all Git users on June 2021, as part of Git 2.32.0. In this process, we
also found and worked to fix a checkout vulnerability in Git, which allowed for remote
code execution attacks when cloning a maliciously crafted repository. Finally, we discuss
the challenges faced during this project and the design decisions taken, as a case study
on how I/O operations from real world desktop applications can be optimized for better
performance on NFS and SSDs.

1.4 Document Structure

This document is organized as followed: Chapter 2 presents the necessary theoretical
concepts about Git and its internal structures, including the division between gitdir and
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working tree, the different states a file might be categorized as, the object store, and
the index. Then it uses these concepts to give an overview of how the checkout process
works. Chapter 3 shows some results for profile tests on a checkout operation, discussing
which steps take more time on each type of storage. Chapter 4 enumerates the challenges
to a parallel checkout implementation, including different race condition issues that can
cause erroneous results and even security vulnerabilities. Chapter 5 discusses other works
related to this project, focusing on three previous approaches to parallelizing the checkout
machinery. Chapter 6 presents the development process and the design decisions taken,
discussing how they helped us overcome the challenges from Chapter 4. It also gives an
overview of the parallel checkout implementation, with a step-by-step description of the
code flow. Finally, Chapter 7 presents the results for the performance tests and concludes
with a discussion on current limitations and future possibilities.

In this document, we will reference commits from Git repositories in the following
format: abbrev-hash ("commit title", yyyy-mm-dd). Where, “abbrev-hash” corre-
spond to the first 10 hexadecimal digits from the commit’s SHA-1 hash.



Chapter 2

Background

This chapter discusses the key concepts of Git’s internal storage system and presents
a detailed overview of each step taken during a checkout operation. Sections 2.1 and 2.2
give an introduction to Git’s terminology and basic functioning. Section 2.3 discusses how
Git classifies the different files present on the working directory of a repository. Section
2.4 briefly explains what is the index, the different types of Git objects, and how they get
stored on disk. Section 2.5 presents the anatomy of a checkout operation with a step-by-
step description. Finally, Section 2.6 presents the 1stat () cache, an important structure
which is used during checkout and, as we will discuss later, should be handled with great
care throughout the parallelization process.

2.1 Commits and References

In a very simplistic definition, Git stores snapshots of a set of files over time. These
different versions of a project (also referred as revisions by other VCSs) are called commits
in Git. Commits are full snapshots, but they are stored in a very efficient format, which
allows repositories to scale. When a new commit is made, Git also registers what was the
previous commit to log the changes over time. This allows to later create on-the-fly diffs,
which helps to see what modifications were introduced at each version.

On a simple historical flow, the commits may form a linear chain. But through the use
of branching and merge operations, the commit history can in fact become non-linear. In
the more general scenario, the commit history is a direct acyclic graph, where each node
corresponds to a commit, and each commit can have zero or more arcs departing from
it and arriving at its predecessor(s). Figure 2.1 illustrates a Git repository history with
multiple commits and branches. The commits are represented by gray rounded shapes
and identified by their SHA-1 hash (which was abbreviated to six characters).

A commit with no predecessors (or parents), like commit a02f3d in the figure, is called
a root commit. And a commit with multiple predecessors, like 73ba2d, is called a merge
commit, because it unifies two or more previously parallel history lines, called branches.
In Git, branching is said to be a lightweight mechanism. The identification of a branch,
called the branch head, is simply a pointer to the commit at the tip of the branch, asso-
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30dd21 -— 1a019b
/ / 982cd6 -«— 62ae6f
a02f3d -«— 02fe29 -— 872a12

é \ b92efd -— b92efd

Figure 2.1: Diagram representing Git commits and references.

73ba2d

ciating a textual name (i.e. the branch name) to a commit. This pointer moves on as new
commits are created at that branch or when the user wants to reset the tip of the branch
to a given commit. Figure 2.1 contains three branches, represented by the orange rectan-
gles with no outline. Note that branch-C was merged into branch-A, whereas branch-B
remains unmerged relative to branch-A.

Branch heads are one example of references in Git, or ref for short. Other types
of references include tags, which can be similar to branches, with the difference that
they do not move around, and remote branches, which are used to track branches on
a remote repository. There are also special references called symbolic refs which can
point to either a Git object (like a commit) or other references. The prime example for this
is the HEAD ref which, roughly speaking, points to the currently checked out version of a
project. At Figure 2.1, we have one tag named “v1.0”, which is represented by a diamond.
The orange rectangle with a dashed outline is the HEAD, which is pointing at branch-A.
So that would be the current state of the repository in this example. In total, this diagram
shows five references.

2.2 Repository Layout

Physically, Git repositories are usually divided in two main parts: the working tree,
orworking directory, andthe git directory, or gitdir. The first corresponds to the
root directory of a project, containing all the user files that are being version controlled,
possibly alongside any others that are not (like build artefacts or new files that were not
yet added to Git). The git directory, on the other hand, stores the data from previous
versions of the project files as well as other important metadata about the repository and
its contents. These two parts of a repository are illustrated by Figure 2.2.

The gitdir usually resides inside the working tree, as a non-version-controlled di-
rectory called .git. But that is not a hard rule: for some repositories, .git is a regular file
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Working Tree Git Directory
—____\ —____ \
G /—/
File1 | |File2 | | Dir 1 ::""iex %tt’f;gt HEAD
— ol o
| |
| .git | references
[ S

Figure 2.2: Most common layout of a non-bare Git repository.

containing the path to a directory that lives somewhere else. Some repositories may even
have a gitdir only, with no associated working tree. These are called bare repos-
itories, and they are typically used on cloud and/or shared environments to publish
repositories that others can pull from or push to. Furthermore, Git allows its users to
create and manage multiple working trees within the same repository’, using the git
worktree command. Thus, it is possible to associate working trees to bare reposito-
ries (although that is not the typical use case for them).

2.3 Working Tree

Working tree files can be in one of two states: tracked or untracked. The first cat-
egory refers to the files that are being version-controlled by Git, and the second corre-
sponds to files that are not. Untracked files may either be new files that were not added to
Git yet or files that the user purposely does not want to put under version control. In this
case, users can additionally mark the files as ignored, which will make Git avoid adding
them to upcoming commits and showing them in status reports.

In relation to the current HEAD, i.e. the commit currently checked out in the working
tree, tracked paths can be further categorized into three states: clean, modified and
staged, and modified and unstaged. The first refers to tracked paths which have no
modifications regarding the currently checked out revision. Staged paths contain modi-
fications which git was told to include in the next commit. And unstaged paths refers to
modifications that should not be commited yet. The last category also includes unmerged
paths, which are paths that could not be automatically merged during a git merge oper-
ation (due to textual conflicts) and now require user intervention to resolve the conflicts.
Modified files (either staged or unstaged) are also called dirty, meaning that they have
uncommited changes.

Note that the same path may sometimes appear in more than one category. For ex-
ample the user may modify a tracked file and stage it, but them further modify the file

'In a repository with multiple working trees, parts of the gitdir are shared among all working trees,
while some structures (like the index and HEAD files) are private.
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without adding the new changes to Git. This way, the file will have both staged and un-
staged modifications. Figure 2.5 illustrates this, also showing how each of these described
states relates to the index file, which will be explained in a following section.

2.4 Git Directory

Among other data, the gitdir holds the reference storage, object storage,
hooks, configuration files, and the index file. In this section, we will focus on the two
structures that are more relevant to this work: the object storage and the index.

2.4.1 Git Objects

Object are immutable units of storage in Git. They are compressed using the DEFLATE
algorithm, and referenced by the SHA-1 hash? of their contents. Objects are one of the
most important structures in Git; they are responsible for storing the different versions
of the project files, as well as other metadata like the structure of the directories, authors
and dates of each commit, etc.

There are currently six types of objects in Git, each following a different format: blobs,
trees, commits, tags, ofs-deltas, and ref-deltas. The first four have a direct semantic map-
ping to user-related contents, while the last two serve a “lower level” purpose of optimiz-
ing disk space used by the others on packfiles (more about that in the next section). We
will not go into too much detail about the structure of each object type, as that is not
relevant for this work, but we will briefly discuss what each one of them represents and
what kind of information they store.

Working Tree Object Store

e

| 4 tree (c73bc)
blob (bb023)
README | 100644 | bb023

src
src 040000 | e901a
tree (e901a) /« blob (ef921)
Makefile | 100644 | ef921 I
main.c | 100644 | aa346 —— blob (aa346)

READM Makefile main.c

Figure 2.3: Example of working tree files and their respective Git objects.

The blob is the most flexible object type, holding an arbitrary stream of bytes. Blobs
are used to save the contents of the tracked files on a project. Going up a level, we find
the trees, which are used to represent directories. A tree object stores a set of file names,
together with their types, their permissions, and the hashes of the objects that hold their
contents. The type and permission can be represented by a single numerical value (e.g.

% At the time of writing, the Git project is transitioning from SHA-1 to SHA-256. Support for SHA-256 is
currently experimental.



2.4 | GIT DIRECTORY

100644 constitutes a non-executable regular file) and the referenced object can be: a blob,
for regular files and symbolic links; a tree, for sub-directories; or a commit, for submod-
ules (another repository nested inside this repository). Figure 2.3 showcases how some
working tree files get stored as Git objects.

One more level up there are the commits, which as already mentioned, represent the
different registered versions of a project. Each commit object holds metadata like: the com-
miter’s name and email, the date of creation, and a user-given message, which is normally
used to describe the changes introduced by that commit. Together with this metadata, the
commit object holds one object ID (i.e. the SHA-1 hash) of a tree object, which corresponds
to the root directory of the project in that specific commit. Each commit object can also
reference one or more parent commits, making up the project’s history and logging how
the project evolved over time.

annotated tag (13cff)

tag name v1.0.2

tagged object ef3f1 j

commit (87efd) <—|_ commit (ef3f1)
parents [87efd,]

parents N
tree f54ed tree c73bc
author John Doe author Jane Doe
Y
tree (f54ed) tree (e901a) ) tree (c73bc)
src 040000 | e901a Makefile | 100644 | ef921 src 040000 | e901a
README | 100644 |ac240 r main.c | 100644 |aa346 README | 100644 |bb023
blob (ac240) blob (aa346) blob (ef921) blob (bb023)
Software XY #include <stdio.h> main: main.c Software XY (v1.0.2)
- int main() gcc $< -0 $@ -
This repository contains ... {... New features: ...

Figure 2.4: Main Git objects and how they interact with each other.

Finally, the last non-delta object to be mentioned is the annotated tag. We have already
discussed about tags in general, but we have not distinguished the two different types of
tags: lightweight and annotated. The first is only composed by a ref (that is why it is called
lightweight), while the second also have a full Git object associated with it. This allows
annotated tags to store more information besides a tag name and the ID of the tagged
object (which is normally a commit, but can also be another object type, including a tag).
This includes, for example: a message, date, and the tagger’s name and email. Figure 2.4
shows a complete example of how the four object types mentioned in this section might
interact with each other.
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2.4.2 Object Storage

Git objects can be stored on disk in two formats: loose and packed. Both formats
use the DEFLATE compression, but packed objects allow even better space optimizations
through deltification. Loose objects are individually stored in their own binary files, which
gets named by the object’s SHA-1 hash. The packed format, on the other hand, allows
multiple objects to be stored in a single file, which is called the packfile. These files are
paired with a pack index file, which helps Git commands navigate the associated packfile
more quickly.

As previously mentioned, packed objects can also take advantage of deltification; a
mechanism which aims to minimize the storage of redundant data. When two or more
objects are similar in their contents, Git may store only one of them wholly (called the
base), and store the other ones as deltas, which basically contain a reference to a base
and instructions on how to reconstruct the full object represented by the delta with mod-
ifications to the said base. Note that the base may be a delta itself, producing what is
called a “delta chain”. Of course, there must be a non-delta object at the end of a delta
chain, otherwise it would not be possible to reconstruct the delta objects in it.

Normally, when first creating an object, Git stores it in loose format. But occasionally,
Git’s garbage collection kicks in and packs the loose objects if their number surpasses a
configurable threshold (6700 by default).

2.4.3 The Index

The index primarily holds information about the current state of the working tree,
also serving as an “interface” between the working tree and the object store. Its main
section is composed by a list, which contains one entry for each file in the present commit,
and potentially some extra entries for merge conflicts and new files that the user wants to
add in an upcoming commit. Each index entry is composed by: a pathname, file metadata
(like the last modification time, file mode, size, and inode number), a set of flags, and the
hash of an object, which represents the contents of the file when it was last staged or
updated in the index (e.g. due to a checkout).

When a file is “staged” (e.g. with git add <file>), it either gets a new index entry
(if it is not already present in the index) or its index entry gets updated with the new
state of the file. That is, its latest contents and metadata. In both cases, if there are any
modifications in the file’s contents, a new object is created at the Object Store and
the index entry receives its reference. The metadata is usually collected with one of the
functions from the stat () family. This information allows Git to tell whether the working
tree file associated with a given entry has any new “unstaged” changes, without having
to read and compare the whole file and the corresponding blob, at every git status.
Figure 2.5 illustrates the different states of working tree files in regards to the index and
HEAD (i.e. the commit/tree that is currently checked out in the working tree).
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I 1. Create files 1, 2, and 3 with
File1  File2  File3 contents "a”, *b”, and "¢,
. respectively.
Working
tree b3 $ echo a > “file 1”
$ echo b > “file 2”
$ echo c > “file 3”
2. Stage and commit files 1 and 2.
Name | Mode Other stat() data Object $ git add “file 17 “file 2”
$ git commit
Index file 1 100644 | Last modification 1
time, inode 3. Modify file 2 and stage the
fle2 |100644 | umber etc. T changes.
$ echo b2 > “file 2”
T $ git add “file 27
tree 1 (HEAD) blob1 =] | blob3 4. Modify file 2 again
Object a b2 wgs "
Store file1 | ... PR $ echo b3 > “file 2
blob 2
file2 | ... R Iy .

Figure 2.5: Example of different working tree file states with regards to the index and HEAD: “file 1”is
tracked and clean; “file 2” is tracked and dirty, with both staged (b2) and unstaged (b3) modifications;
and “file 3” is untracked. The commands on the right showcase how such scenario was produced.

2.5 Checkout Anatomy

Checkout is the Git operation that materializes files from specific versions into the
working tree, also updating the index accordingly. The first Git command that comes
to mind when discussing this operation is the homonymous git checkout command,
but the checkout machinery is also used by many other commands like git reset, git
clone, git merge, git sparse-checkout, etc. Checkout-related commands usually
perform the following “top-level” steps:

1. Read the index file and load its data into memory. Each index entry is stored in
a struct cache_entry (which we will reference by either “cache entry” or “in-
dex entry” from now on). These entries are placed in an array which is sorted in
ascending order on the pathname field, just like the on-disk index file3;

2. Update the in-memory index according to the goal of the running command. This
normally involves loading different data into the index by creating, modifying,
and/or removing index entries to achieve a certain end result (e.g. a branch switch,
a merge, etc). Although working tree files are typically not modified at this step, it
may be necessary to inspect the working tree to warn about unsaved changes that
could be lost (and possibly abort the operation);

3. Reflect the changes made to the index entries in the working tree, creating and
deleting files as required. The contents of the new files are loaded from the objects

For more information, see: https:/github.com/git/git/blob/v2.32.0/Documentation/technical/
index-format.txt


https://github.com/git/git/blob/v2.32.0/Documentation/technical/index-format.txt
https://github.com/git/git/blob/v2.32.0/Documentation/technical/index-format.txt
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storage;
4. Save the metadata from the newly written files in the in-memory index entries;
5. Write the new index to the disk.

Not all of the commands that use the checkout machinery perform all of the steps
above, and some of them even do additional work, but this list summarizes the key points.
To help visualizing how these steps can be executed by a Git command, consider the
following example: suppose we have a Git repository with two branches, named B1 and
B2. The commit at the tip of B1 contains the files X and Y, while the commit at the tip of
B2 contains X and Z. The contents of the file X differs between the two branches. Now
consider that B1 is currently checked out and all files are clean (i.e. there is no local mod-
ifications in the working tree or the index with regards to B1). Figure 2.6 ilustrates this
proposed scenario showing how the branches, working tree, and index would look like.
Note that the file X from B1 and B2 point to different blobs.

Objects and References

! / ree | biob 1

. X |
commit 3
Y —
/ blob 2
commit1 <— commit 2 \
commit4 — tree blob 3
X .|+
;. JeameSry
Working Tree Index
SrC
Name | stat() data | Object
X Y X blob 1

(blob 1)| |(blob 2)

z blob 2

Figure 2.6: Repository representation for a checkout example (pre-checkout).

In order to switch to branch B2, the user may run the command git checkout B2,
which will do the following: First, the index will be loaded from disk. The file currently
contains two entries: X and Y. Then, Git will load the commit at the tip of branch B2, as
well as the tree pointed by it, to update its in-memory index entries (i.e. Step 2). During
this process, Git will mark the entry Y to be removed, update the entry X, and create a
new entry for Z (all in the in-memory index). This leads to Step 3, which will update the
working tree. At this point, Git will replace the old X file with the new one (which has
different contents), remove Y, and create Z. Then, after saving the metadata from files
X and Z in the new in-memory index, this in-memory structure will be written to disk,
replacing the old index file.
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The main focus of our parallelization effort is Step 3, which is responsible for up-
dating the working tree. This step — and also the one after it — are performed by the
checkout_entry() function, which receives one cache entry and produces the neces-
sary changes in the working tree to make it up to date in respect to that entry. Normally,
checkout users that call this function directly will do so in a loop to update multiple paths.
One example of such user is git checkout-index, which does not need to perform any
prior changes to the index, only write out the paths that were requested by the user.

However, it is more common for a checkout-related command to perform index mod-
ifications first, and then check out the modified entries in the working tree. While the
specific type of index change may depend on the running command, a very common op-
eration is to load one (or more) tree object(s) into the index, like we saw in the previous
example. This process is the main goal of unpack_trees (), which, after updating the in-
dex, can also be optionally instructed to perform the necessary checkout_entry () calls
and update the working tree to make it match the new modified index. Consequently, the
unpack_trees () API can take care of steps 2 to 4 all by itself.

These two functions make up the main “entry points” to the checkout machinery; the
higher level unpack_trees () API and the lower level checkout_entry (). The following
two subsections will discuss each one of them with more details, but focusing on the latter,
which is the main focus of this work.

2.5.1 The unpack_trees() Function

unpack_trees() traverses one or more tree objects while performing a “trivial
merge” among them and the index. The inner workings of this process depends on the
number of trees and merging function. We will not go into too much details about it here,
but you can read more at the Appendix B and Git’s “trivial merge” documentation (Grt
DEVELOPMENT COMMUNITY, 2021d). The unpack_trees() machinery also updates the
working tree, if requested by the caller, and checks for unsaved data that could be lost in
the process to properly warn the user.

While unpack_trees () prepares the new candidate index, it marks the entries that
were changed so that the proper updates can be made in the working tree at the end. This
is done using two temporary flags: CE_UPDATE, to indicate paths that must be created
or updated, and CE_WT_REMOVE, to indicate paths that must be removed. Note that,
while some Git commands show information about file renames, the checkout machinery
handles them like two distinct operations when updating the working tree: a file removal
followed by a file creation. This means that there will be two entries in the in-memory
index: one for the pre-rename file, which will be flagged with CE_WT_REMOVE; and one
for the post-rename file, which will be flagged with CE_UPDATE.

The two sets of flagged entries are handled separately in two consecutive loops. First,
unpack_trees () iterates through the CE_WT_REMOVE entries to delete the respective
files from the working tree. This is done by unlink_entry (), which first checks that the
leading components of the path are real directories, to avoid following symbolic links and
potentially removing the wrong file. (Git handles symlinks in the working tree by tracking
the links themselves, not the target files; so it should not follow symlinks when removing
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or checking out entries.) The check is done using 1stat(), and some results are cached
for better performance. We will describe more about this cache later, in Section 2.6. At
this step, if a directory gets empty after removing one or more files, it is also removed.
Then, the process is recursively repeated at the parent directory.

After processing the CE_WT_REMOVE entries, unpack_trees() loops through the
CE_UPDATE calling checkout_entry (), which creates the necessary files in the working
tree.

2.5.2 The checkout_entry() Function

The checkout_entry () function implements the core procedures to materialize the
files referenced by the new candidate index into the working tree. Given one index entry,
it does the following steps:

1. Check the CE_WT_REMOVE flag. Remember that, although unpack_tree()
processes these entries in a prior separated loop, some users of the checkout ma-
chinery call checkout_entry () directly, so it was extended to check for this flag
and call unlink_entry () when it is set. If the flag is set, the function return early
(after removing the entry).

2. Check the leading components of the file. This is done by calling 1stat() on
each dirname component and making sure that it is a real existing directory. Like
the dirname check done when removing old files, some lstat() results are also
cached at this step, as we will discuss in Section 2.6.

Missing directories are created. If one of the components already exist but not
as a directory (i.e. as a regular file or symbolic link) Git either removes and replaces
it by a directory, or aborts the operation to avoid overwriting unsaved data from the
user (where “unsaved data” can be either untracked files or unstaged modifications).
This behavior is controlled by an internal flag, passed to checkout_entry ().

3. Check the file existence and status. This is done by lstat()-ing the file and,
if it exists, comparing the returned data with the data cached in the index entry to
see if they match. In some specific circumstances the stat data may be insufficient
to tell whether the file is up to date. So it may also be needed to read, convert, and
hash the file’s contents to compare it with the cached hash. But this is not needed
in general as the stat data is typically sufficient.

The comparisons can lead to three different states:

(a) The file is already up to date. There is nothing to do in this case, so the
function returns early with a success status.

(b) The file exists but it does not match the index entry. In this case, Git
either removes the old file to make room for the new one or aborts the
operation to avoid deleting user data. Once again, this decision is made
through an internal flag passed to checkout_entry () by its caller.
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We can also reach this case due to path collisions. E.g. when trying to
check out case sensitive files like FILE and File on a case-insensitive file
system, the two paths will correspond to the same file on disk. The collision
is treated exactly like any other “existent but not up to date file”. The only
exception is on clone, when the path gets added to a list of collisions which
is later reported to the user. Using the currently implemented mechanics, Git
can only do this report on clone, because it is certain that the working tree
was empty before checkout and, therefore, finding an already existent file
when trying to check out an entry can only mean that there was a collision.
However, such mechanics would not work on e.g. a branch switch.

Note that, instead of removing the old file just to create the new one, Git could
simply open the existing file and overwrite its contents. However, it is much
easier to recreate it, as the file system will already set the right permissions
for the new file, taking the current umask value into consideration.

(c) The file does not exist yet. This is the most straightforward case as there is
nothing to be removed, only created.

4. Write the file. This step is handled by a lower level function which: loads the asso-
ciated blob object from the object store (i.e. reads, unpacks, and delta-reconstructs
it); passes the blob to the required conversion filters (which might include running
external commands); creates the file in the working tree, and write its contents. For
large blobs, this process is done using a streaming mechanism to avoid handling
the blob in memory all at once. The streaming interface loads one section of the
blob at a time, converts it, and write the result, repeating this until the entirety of
the blob is processed.

The disk reading is performed through memory mapping, both for loose and
packed objects (as well as for the packfile idx and the Git index itself). This is
a form of lazy I/O that maps sections of files on the disk to pages in the virtual
memory. The mapping is initialized with a mmap () call (which is likely to execute
very fast), and then the application can use the returned pointer as if the whole
data was already available on memory at that address (although it is actually not).
When the application attempts to access the data, it generates a page fault, making
the kernel read the respective section on the file and load it into the page that the
application wants to access. All of this is done transparently to the application,
which can direct access the address returned by mmap () without even knowing
what is happening under the hood.

Regarding the conversion phase, users can specify zero or more filters to be
applied upon the stored blobs before writing them to the working tree. These are
called smudge filters. There also exists a filtering mechanism for the other way
around, i.e. to convert the contents of working tree files before adding them to the
object store. These are called clean filters. Some filtering operations are performed
by the running Git process itself, like end-of-line conversions and re-encodings,
but users can also specify external filters to be invoked by Git. These can appear
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in two variations: one-shot filters and long-running process filters. The first only
processes one blob per process, receiving the blob’s contents through stdin and
delivering the result to stdout. The second requires a more robust protocol, as the
same process is capable of filtering multiple blobs. Long-running filters are usually
invoked only once during checkout and persist throughout the whole operation,
receiving blobs from Git and handling back the results.

5. Retrieve the file metadata from the just written path. This includes file at-
tributes like the size, mode, last modification time, etc. Le. the data gathered with
any function from the stat () family. The metadata is then saved in the in-memory
index entry associated with the just written file.

Update for each ; check remove file
. 1st unlink_ent ¢
Rgad the in-memory > > E_WT_REMOVE| 0 leading and empty
index . . . h . .
index entries entry directories directories
unpack_trees()
2nd for each checkout_entry() check crea_te
» CE_UPDATE leading missing
entry directories directories
3rd or abort

matches index

skip to
next entry

load and
reconstruct
blob

check file
status

remove
old file or
abort

status—— does not match index

Y

missing

save
metadata on
in-memory
index

retrieve

create
working tree
file

write filtered
contents

filter blob

written file

write
in-memory
index to disk

Figure 2.7: Diagram of the different steps commonly taken during checkout.

Figure 2.7 summarizes the different steps described in this section in a simplified dia-
gram, with emphasis on the checkout_entry tasks.

Returning to the example from the beginning of this section (Figure 2.6), we can now
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expand on the working tree update phase. Remember that we analysed a checkout oper-
ation that switches from branch B1 (with files X and Y) to branch B2 (with files X and
Z). Also remember that X had different contents at the two branches. Skipping directly
to the working tree update phase, we would first iterate over the CE_WT_REMOVE entries,
which in this case is only Y, and remove the associated files from the working tree. Then
we would look at the CE_UPDATE entries, i.e. X and Z. Starting with X, we would look
at its leading directories. Since it has none, there is nothing to do at this step. Then we
would check the file status, which shows that the file is present but does not match the
index (because the in-memory index is already updated to reflect B2, while the working
tree file still has the contents from B1). So Git would remove the file. Finally, it would
load the blob that has the contents for X at B2, create a new empty X file in the working
tree, and write the data. (There is no filter specified in this case, so the data read from the
object store is ready to be written in the working tree.) This process is then repeated for
Z, with the difference that there is no Z file in the working tree, so there is nothing to be
removed.

There are a few important caveats to how we described the checkout_entry () steps.
First, we focused the explanation around entries associated with regular files, which
should be the vast majority of files on most repositories. Nevertheless, symbolic links
and submodules follow a similar process. For symbolic links, the major difference is that
Git does not apply any smudge filters and neither stream write them, as their contents
are much shorter then regular files. As for submodules, the checks at Step 3 are a little
different, and the submodule’s checkout is handled in a separated child process. But the
main process spawns the subprocess and waits for its completion before continuing with
the other entries.

Another consideration worth mentioning is how unpack_trees() and check-
out_entry () end up duplicating some working tree checks (e.g. to evaluate whether a
file is up to date). One reason for this is that not all users of the checkout code use the
higher level unpack_trees(), so the checks must be at checkout_entry() too. But
this is only part of the story, as even the ones that do will also need the checks at the
lower level function to detect and react to some scenarios. The duplication is obviously
not good for performance, so there were propositions on how to remove them. We will
discuss more about it at Section 5.4.

Finally, although it was important to study how unpack_trees() works to make
sense of checkout_entry()’s role during a checkout, our goal with this work is to im-
prove the performance of checkout operations that need to create many files in the work-
ing tree. Therefore, as previously mentioned, our main focus is at the checkout_entry ()
calls, which we wish to spread among multiple workers. It is beyond the scope of this
project to accelerate other sections like the tree walk and merging code or the index pars-
ing/writing, for example.

2.6 The 1stat() Cache

As described in Section 2.5, all paths modified during checkout first have their leading
components checked with lstat (), to make sure that they are all real existing directories.
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If not properly handled, this step can incur in an enormous amount of 1stat() calls. Fur-
thermore, since many files share the same leading directory (or part of it), most of these
calls will be redundant. For example, the checkout of tag v5.12 in an empty working tree of
the Linux repository incurs in the creation of about 72 thousand regular files distributed
over 4700 directories. If we were to call 1stat() for every directory component of each
one of these 72 thousand files, we would make over 906 thousand calls, which is way
more than the number of directories itself. To optimize this process, Git uses an inter-
nal lstat() cache, which is capable of reducing the number of calls in this example to
roughly 13 thousand. There are still redundant calls, but the cache leads to an impressive
70x reduction. The caching is very efficient as many checkout operations will process the
index entries in order, so paths within the same directory are adjacent to each other.

The cache does not cover all uses of 1lstat(), though, just the ones issued
through one of the functions provided by the cache’s API. Some examples are
has_symlink_leading_path(), which returns true if and only if one of the direc-
tory components of a path is a symbolic link, and has_dirs_only_path(), which
returns true if and only if the full path only contains real directories. Each function
from this API caches different things, but all of them use the same global storage?,
which basically consists of a string buffer and some flags. Reusing our two API exam-
ples, has_symlink_leading_path() caches both directory and symlink entries, while
has_dirs_only_path() only caches directories. The cache works by storing the last
longest path checked and known to be one of a specific type that the function wants
to cache. For example, if we are caching symlinks and directories, at some point the
cache might contain the string X/Y/Z and the flag FL_SYMLINK, indicating that Z is a
symlink. Note that, in this case, we also get the extra information that X and X/Y are real
directories.

During checkout, the lstat () cache is used in three places: first during the tree walk
and merging phase of unpack_trees(), then for file removals (the unlink_entry()
calls), and finally for file creations (the checkout_entry () calls). The last two both need
to check whether the leading part of a checkout path contains real directories, but they
do so with slightly different mechanics, so they use different functions, which cache
different things. To give an example of how the checkout code use this cache, pretend
we need to check out paths A/B/C and A/B/C2. We will focus only on file creations, for
now, because that is the main goal of the parallel checkout effort. At this phase, the code
caches directory entries and nothing more. Starting with A/B/C, we would pass A/B to
the has_dirs_only_path() function, which would either 1stat() both A and A/B or
retrieve the information about these components from the cache. Say A is cached, but
A/B is not. The function knows A is a directory, and now it only has to lstat() A/B. If
it is also a directory, the function stores this information in the cache and returns true.
Now suppose the next entry to be checked out is A/B/C2. We know A and A/B are real
directories because we have cached this information, and now has_dirs_only_path()
can return fast without even calling 1stat().

*With the exception of some thread-safety variations which allow each thread to pass its own cache state
as an argument.



Chapter 3

Profiling

For a successful parallelization, it is important to understand what are the hotspots in
the code, and whether they are well parallelizable or not. Otherwise, the developer might
end up parallelizing tasks which are not critical for performance or investing too much
time in places that cannot really be parallelized in an efficient way.

Conversely, some problems are well parallelizable but not in the way that the current
implementation is designed. In this sense, the early study of performance can also assist
developers to plan what refactoring can be made in order to allow a greater degree of
parallelism in the code, before actually implementing any parallelism.

3.1 Tools

Profiling tools can be of great help at this stage. But it is important to understand what
exactly each tool is tracing or sampling, in order to choose the appropriate one for each
use case. The code we were aiming to parallelize performs many I/O operations: reading
the objects from the database, creating files and directories in the working tree, writing
their contents, querying the file system for the metadata, etc. For this reason, relying only
on a CPU time profiler, like gprof would not give us the right intuition as to which role
I/O and other oft-CPU waiting time play during checkout.

Another requirement for our choice of profiler was that it should capture both system
call times as well as userspace calls, and let us see exactly which functions on the second
group lead to the ones on the first group. This is very important in checkout’s case because
some application functions may in fact spend most of their time in lower level system code,
doing apparently unrelated tasks, and we would not be able to visualize that otherwise.
The most obvious example where this can happen is during disk reading: as Git reads the
objects and the index file using mmap (), the actual disk I/O only happens when Git tries to
use the data and generates a page fault. This makes profiling more challenging since the
object reading times are mixed with the actual usage of the data during the decompression
phase. If our choice of profiler was not able to identify and separate system routines from
application routines and show us the caller-callee relationships, it would not be possible
to see what percentage of time was actually spent on I/O vs. decompression code.
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Furthermore, to have the full picture of the call chains, we also wanted our profiling
tool to be able to report functions from both static and dynamically linked libraries, like
zlib and glibc. This gives us a greater level of detail in the profile results, and allow us to
better visualize what are the real bottlenecks in each case, if any.

The bce-tools! project has exactly what we needed to fulfill these requirements.
Besides being a development toolkit for Linux eBPF? programs, the project also contains
a collection of tools using this technology to monitor stack traces, disk usage, network
statistics, and other aspects on Linux machines, including profiling. Furthermore, because
eBPF programs run in the kernel context (sandboxed), eBPF-based profilers are more effi-
cient and cause less overhead to the application being profiled.

The two bcc tools we used are offcputime and profile. The first gives a summary
of the time spent off-CPU per call stack, and the second is an on-CPU sampling-based
profiler. Combining the resulting data from both tools we can see the full picture of where
the wall clock time is spent during a checkout operation.

To make sure these tools would be able to resolve the function addresses into the
proper symbols, we compiled the libc, zlib, and Git using -g -fno-omit-frame-pointer. Ad-
ditionally, due to an issue in the bcc-tools® the symbols cannot be resolved if the ap-
plication being profiled ends before the profiler itself. To solve that, we modified Git to
receive the PIDs of the profile and of fcputime processes and signal them to terminate
right before Git itself finishes.

After collecting the data from both profilers, we used Brendan Gregg’s FlameGraph*
tool for visualization. The output from of fcputime is already in time unit, but profile
(the on-CPU sampler) only gives the number of samples it took at each function. So we
divided its output by the configured sample rate (which, in our case, was 49 Hz) to have
the same unit for the on-CPU and off-CPU data.

3.2 Profile Results

As previously mentioned, the checkout machinery is used by many Git commands.
But since our primary goal was to speedup operations with many file creations, we chose
to profile a command where this is the main bottleneck: a git checkout . execution on
an empty working tree of the Linux kernel repository (version 5.12). This is similar to the
first checkout users see right after cloning the repository. It is responsible for the creation
of over 70 thousand files.

The Linux repository is frequently used for Git performance tests because it is one of
the largest repositories publicly available. Besides its 70 thousand working tree files, the

L https://github.com/iovisor/bcc
% https://ebpf.io/
* https://github.com/iovisor/bcc/issues/2883#issuecomment-617465106

* https://github.com/brendangregg/FlameGraph
At the time of writing, the latest tagged release of FlameGraph is version 1.0 from 2017. We used a more
recent version from the Git repository, at commit 1blc6deede (" 'more java matching'', 2019-02-
16), with a few coloring modifications to support our I/O-and-CPU format.
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https://github.com/iovisor/bcc/issues/2883#issuecomment-617465106
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commit history has about 8.2 million objects, today, putting the total size of the repository
at around 4.5 GiB (about 3.5 GiB comes from the gitdir alone).

Figures 3.1, 3.2, 3.3, and 3.4 show the results respectively on an SSD, two different
HDDs, and an NFS setup. The hardware description for all of the machines used in tests
for this work can be found at Appendix C. For convenience, a summary of the machines
that appear in this chapter is also provided at Table 3.1.

Machine Storage CPU Memory

Mango SSD PClIe NVMe | Intel(R) Core(TM) i7-7700HQ, 16 GiB (2 x 8GiB)
v1.2, ext4 2.80GHz, 8 logical cores DDR4, 2133 MT/s

Cicada HDD 5400 rpm, | Intel(R) Core(TM) i5-3317U, 6 GiB (1x 4GiB 1x 2GiB)
SATA 2.6, ext4 1.70GHz, 4 logical cores DDR3, 1333 MT/s

Wall-e HDD 5400 rpm, | Intel(R) Core(TM) i5-4210U, 8 GiB (1 x 8GiB)
SATA 3.0, ext4 1.70GHz, 4 logical cores DDR3, 1600 MT/s

NFS

EBS gp3 NFS v4.1 backed
by a EBS gp3 Intel(R) Xeon(R) Platinum 8124M, 10 GiB

* Note: client | volume (SSD) 3.00GHz, 4 logical cores (NFS client)

and server with xfs. (NFS client)

on AWS EC2 | (NFS Server)

instances

Table 3.1: Summary of the hardware used for profile tests. All machines running a Linux distribution.
Refer to Appendix C for the full hardware and software descriptions.

In these graphs, each rectangle corresponds to a function call, and its width represents
the time spent on it. The y-axis is ordered in caller-callee fashion from bottom to top, thus
showing the call stack depth. The x-axis represents the proportion of run time used by

each function. The graphs are also color coded: blue Il and correspond to
off-CPU time, while red Il and correspond to on-CPU time.
Additionally, the lighter colors on top (*, ') represent kernel functions, which are

also separated from Git functions through gray “-” rectangles.

For research purposes, we also profiled this operation from a version of the Linux
repository containing only the objects from v5.12 expanded to loose format (see
flamegraphs at Appendix A). This repository was created using the --depth=1 option of
git clone and then expanding the generated packfile with git unpack-objects. This
resulted on a repo with about 76 thousand objects totaling 260MiB (or about 446MiB of
disk space®, without the working tree. Note that such a repository is very unlikely to
exist naturally since Git packs the loose objects when their number surpasses the 6700
threshold. Our artificially created repository has almost 12x that number, so we had to
disable automatic garbage collection with git config gc.auto 0 to avoid packing

5 Files are allocated on disk in clusters, which defines the minimum allocation unit of the file system. If the
data is smaller than the cluster size, the file will still occupy a full cluster on disk. Therefore, there can be
discrepancies between the data size and the size on disk.
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Figure 3.1: Checkout profile flamegraph on machine Mango - SSD (packed objects case).

Checkout Profile on Cicada - HDD (packed objects)
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Figure 3.2: Checkout profile flamegraph on machine Cicada - HDD (packed objects case).
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Checkout Profile on Wall-e- HDD (packed objects)

Figure 3.3: Checkout profile flamegraph on machine Wall-e - HDD (packed objects case).

Checkout Profile on NFS - EBS gp3 SSD (packed objects)

Figure 3.4: Checkout profile flamegraph on NFS - EBS gp3 - SSD (packed objects case).
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while running the profile and benchmarks. Since this is an artificial example, we merely
used it to compare how checkout performs with loose and packed objects. The results
from the profiling and benchmarks using loose objects should not be interpreted
in any more general context besides experimentation.

The flamegraphs have a substantial amount of information and it can be tricky to
collect insights directly from them. So, in the following sections, we will summarize the
most time consuming operations for each machine and dissect the data on a case-by-case
basis.

3.2.1 SSD

Checkout profile on Mango - SSD
(a) packed objects (b) loose objects

others
14.9%

inflate Z
29.6% 3
2%

inflate

51.4%

others
10.7%

fstat
3.7%

filemap_fault
7.5%

Figure 3.5: Summary of checkout profile on machine Mango - SSD

Starting our analysis with the packed objects case (Figure 3.5a), we can see that more
than half the runtime was spent in the decompression routines alone. Le. zlib’s inflate ()
function. That is great news for parallel checkout, since inflation is a thread-sate CPU-
bound operation and we have to call it for each object, meaning that it can be highly
parallelizable. We also see a good amount of time spent on I/O, with stat(), write(),
open(), and filemap_fault(). The last one in this group is the kernel function respon-
sible for reading data from a memory mapped file during a page fault. Since the SSD is
very fast, reading does not take so much time and CPU becomes the bottleneck.

Nevertheless, parallelism should increase the number of reading requests arriving at
the I/O queue, giving the operating system a better chance to reorder and merge them in a
way that further increases the throughput. Furthermore, SSDs are known for having good
internal parallelism (CHEN, LEE, ef al, 2011) (CHEN, Hou, et al., 2016) so the concurrent
reading requests should be parallelizable to some extent.

Looking at the loose objects case (Figure 3.5b), we can see that filemap_fault()
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takes a much bigger chunk of the total runtime. Besides, the average runtime (for 15
samples) went from 8.6 seconds to 15.7 seconds. It is worthy noticing that the reading
patterns from these two checkout cases are quite distinct: with packed objects, we read
multiple different sections of a single large (3.2GiB) file, the packfile; whereas on the loose
objects checkout, we actually read 76K small (~6.1KiB) individual files.

Due to the higher compression level of packfiles, one could hypothesize that the over-
all reading size must be smaller in this case. To test this idea, we used the vmtouch tool®,
which allows us to see how many pages of a file are resident in memory (i.e. physical
memory). Generally, this is not a precise test as some of the pages that were loaded dur-
ing checkout may be evicted from memory before we get to run vmtouch (or even during
the Git execution itself). To mitigate this issue, we ran the test when the system was
mostly idle, and choose a machine (Mango) that has enough RAM to avoid premature
page evictions. To verify this, we loaded all files from both clones of the Linux repository
(i.e. the packed and the loose repo), and the machine was able to hold all the 6.1 GiB in
the page cache simultaneously.

Running vmtouch after the checkout execution we are profiling (also taking care to
drop the file system caches before running Git), we found that 436MiB of the . g1t direc-
tory were resident in memory after the loose objects checkout. Whereas on the packed
objects case, the resident size was 551MiB, which shows that our initial hypothesis is
incorrect. What we did not consider was that, in the packed case, Git also had to read
many sections from the packfile index. (If we only look at the objects themselves, the
resident size is about 354MiB.)

Another hypothesis is that the packed object checkout takes better advantage of read
ahead, thus increasing its reading performance. Read ahead is a mechanism by which
the kernel will read more bytes than what was actually issued on a read request, on the
premise that the application is likely going to require those extra bytes later. Since the
packfile and its index are way larger than the loose object files, reading operations could
be making better use of the read ahead windows on those large files. On the other hand,
those two files are read with a mix of sequential and random patterns, and sequential
readding is usually what benefits the most from read ahead. Nevertheless, packfiles still
have good locality, and the SSD machines where we ran the tests have enough RAM to
avoid the need for swapping out packfile pages during the checkout execution. This means
that even though the sections loaded through read ahead mechanics might not be needed
right away (as if we were doing sequential reads), Git can still benefit from them being in
the cache since it may later need to process an object in that vicinity.

To test this new hypothesis, we ran a benchmark checking out v5.12 on both Linux
repositories (i.e. the packed and the loose versions) with and without read ahead. We
disabled read ahead by running “blockdev --setra 0” on the SSD device of machine
Mango, and re-enabled it with “blockdev --setra 2567, which sets the read ahead
to 256 blocks of 512 bytes (totalling 128 KiB). This was the default read ahead size on
this device. To be extra careful, we also modified Git to issue posix_fadvise() calls
on opened packfiles, idx files, and loose object files, giving the POSIX_FADV_RANDOM hint.

® https://hoytech.com/vmtouch/
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This informs the kernel that the application will not be reading the data sequentially, thus
allowing it to decrease or disable the read ahead window for that file. Table 3.2 shows the
result of this test, using a sample size of 15 executions for each test case. As we can see,
the affect of disabling read ahead is indeed much more prominent on the packed objects
case, where the runtime was reduced by more than half.

With read ahead | No read ahead Speedup
Packed Objects | 8.681s+0.296s | 18.910 s £ 0.385s | 0.46 + 0.02
Loose Objects | 15.544 s +0.148 s | 17.622 s £ 0.197 s | 0.88 £ 0.01

Table 3.2: Checkout benchmark on machine Mango with and without read ahead.

3.2.2 HDD

Checkout profile on Cicada - HDD
(a) packed objects (b) loose objects
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Figure 3.6: Summary of checkout profile on machine Cicada - HDD

On both the HDD machines (Figures 3.6 and 3.7), we see filemap_fault() domi-
nating the runtime for both packed and loose objects, with over 70%. The higher reading
times were already expected, as HDDs rely on spinning disks and mechanical arms to read
the data, making them significantly slower than SSDs. So much so that I/O becomes the
major bottleneck and zlib inflation only takes 6~10% of the time. This might not be a good
scenario for parallelization, as HDDs do not usually process random requests very well.
As BorTo et al., 2018 mentions: “HDDs are known for presenting the best performance when
accesses are done to sequentially positioned blocks instead of randomly because it minimizes
seek time.” Note that the authors use “sequentially” in terms of physical disposition of the
data (i.e. “contiguously”), not the number of threads or processes. Thus, the sequential
checkout likely already suffers from some amount of random access, as the required ob-
jects may be somewhat apart from each other (both the loose object files, which can be
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Checkout profile on Wall-e - HDD
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Figure 3.7: Summary of checkout profile on machine Wall-e - HDD

scattered on the disk, and the packed objects which, despite the good locality of packfiles,
might not be that close either). Nevertheless, parallel checkout may further increase the
randomness in the access patterns, increasing the seeking time and the I/O latency.

In some cases, however, the increased number of outstanding reading requests on the
I/O queue might allow better optimizations to be employed by the I/O scheduler, as we
mentioned at Section 3.2.1. Nevertheless, note that the HDD will not benefit from this
effect for internal parallelism, as the SSD does, due to the differences in their mechanics.
We will discuss these topics further on Section 4.5.

Still looking at the HDD summary plots, one could ask why the reading operations
take so much time while writing is actually very fast. One of the key reasons behind this
difference in performance is that writes are usually cached/buffered on Linux, thus defer-
ring the actual disk operations. This is called write-back caching, and it makes writing
much faster. The application can of course override this behavior by, for example, using
fsync() to flush the data before closing the file, or opening the file with the 0_SYNC flag
(which is similar to calling fsync() after each write() call). However, Git does not use
any of these mechanisms when writing to the working tree.

To see what impact the synchronous data flush would produce on the HDD checkout,
we repeated the profile tests using two modified versions of Git, each employing one of
the techniques we just mentioned above. For the “fsync-on-close” modification, checkout
took 1h04m on the packed case (54x times slower than plain Git) and 1h13m on the loose
case (44x slower than plain Git). On both cases, fsync() was responsible for 94~97% of
the total run time. For the 0_SYNC modification, the Git command took 1h37m on the
packed case (82x slower than plain Git) and 1h54m on the loose case (69x slower than
plain Git). Furthermore, write () was the dominant function with 96~98% of the checkout
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run time.

3.2.3 NFS

Checkout profile on NFS EBS gp3 - SSD
(a) packed objects (b) loose objects

Istat . .
6.20% mkdir others mkdir
: | 1.5% 6.3% 1.1%
¢ os(z)e others ' Istat
6.1% 2.4% 4.3%

Figure 3.8: Summary of checkout profile on NFS - EBS gp3 - SSD

The NFS profile (Figure 3.8) is quite different from the previous ones, but it is expected
since the I/O mechanics are also very different there. First of all, notice that the relative
time taken by inflate() and filemap_fault() is now so small, that the functions no
longer appear in the pie plot’ (their contributions fall inside the “others” section). The two
most time consuming functions on NFS were open() and fstat(), in that order. Both
these calls require one (or more) round-trip(s) to the server, which is subject to network
latency. The round-trip costs may only be a small overhead when writing a large file, for
example, but in our checkout workflow where Git needs to create lots of small files, the
costs add up and end up taking plenty of time.

For open(), we can see on the flamegraph that the most time consuming calls are
the ones creating new files in the working tree. Git creates these files with the 0_CREAT
and O_EXCL flags, which means that the server must use exclusive creation semantics.
This implies extra work to check for the file existence and also to ensure exclusivity for
that particular NFS client. Under some circumstances, the exclusivity is implemented by
storing a verifier in the space used for some of the new file’s attributes, so the client
needs to perform one additional network request, after the file creation, to properly set
the initial values for its attributes. This means that the client must perform two network
round-trips, one for the OPEN operation of the NFS protocol, and another for SETATTR.

7 Just for comparison, the time taken by inflate() on NFS corresponds to about 1.4% of the total runtime
on the packed case, and 1.01% on the loose case. For the filemap_fault() calls, these percentages are
respectively 0.1% and 4.4%.



3.2 | PROFILE RESULTS

And we can use the flamegraph again to see that this is indeed what is happening in our
case. See how the runtime of the _nfs4_do_open() kernel function is equally divided
between another open subroutine and the nfs4_do_setattr () function.

Before talking about fstat () we must briefly discuss close-to-open cache semantics.
We already mentioned that Linux typically uses write-back caching by default. On a local
file system, the cache is shared among all the processes that are running in that machine,
so they call all see the file modifications even before they make their way to the persis-
tent storage device. However, on a networked file system, each client has its own local
cache, which is of course not shared with the others. Therefore, to be able to use caching,
which is so important for performance, while keeping some kind of consistency, the NFS
protocol provides what is called “close-to-open” cache semantics. Roughly speaking, this
means that machine B will be able to see the changes to a file made by machine A, as long
as machine B opens the file after machine A closes it. This design allows NES clients to
perform write() calls locally on their caches (again, if the application does not request
otherwise), but they must flush all written data to the server on close(). For this me-
chanics to work, the clients must also revalidate their caches on open (), by fetching file
attributes from the server and comparing them to what is cached.

Because of the close-to-open cache consistency, we were expecting that close()
would be very time consuming in our checkout profile, as it has to flush all the locally
written data to the server. Furthermore, modern NFS servers normally use synchronous
mode by default, which means that the server itself must flush the operations to its own
disk before responding. So a client close() has an associated overhead of both the net-
work flush and the synchronous I/O on the server. However, close() does not even
appear in our plot of the most time consuming functions during checkout on NFS. We
were initially quite intrigued by this observation, but then we inspect the client’s sockets
during checkout using tcpdump and wireshark, and found out that fstat() was trig-
gering the kernel to perform an NFS WRITE operation. Le. the kernel was flushing the
previous local writes to the server on fstat(), and therefore, there was nothing more
to be flushed at the time Git called close(), which made it much faster than what we
expected. This also explains why fstat() was so time consuming. We can even see this
fact at the flamegraph: see how vfs_fstat() spends almost the totality of its time on
filemap_write_and_wait_range().

With that in mind, it is in fact quite easy to understand why fstat() produces this
behavior. This function is used to retrieve metadata about an open file, including but
not limited to its size, mode, and last modification time. In order to get the correct value
for some of this fields, the NFS client must flush the written data to the server before-
hand. Otherwise, the value could be outdated. Confirming this hypothesis, there is a
comment in the Linux kernel code at the nfs_getattr () function, right before calling
filemap_write_and_wait(), which says “Flush out writes to the server in order to up-
date c/mtime”.

Having an understanding about how and why checkout spends its time on NFS, we can
try to access whether a parallel implementation would be beneficial in this case. For both
open() and fstat(), the two most time consuming functions, practically the entire time
is spent off-CPU, either sending requests to the NFS server or waiting on its responses.
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Since NFS servers are typically able to process multiple connections simultaneously, par-
allel checkout can be an effective way to amortize the network latency and also promote
parallelism in server work associated with these operations.

In summary, the results from this chapter shows us that parallel checkout is quite
promising for NFS, and likely to local SSDs as well, where there is a lot of CPU work that
can be parallelized. (We can achieve even greater speedups if the SSD is able to benefit
from the concurrent readings too.) However, local HDDs are still an open question. At
Section 4.5 we will expand the discussion around the different aspects of SSDs and HDDs
in regards to parallelism, theorizing which role this may play when running parallel check-
out locally.



Chapter 4

Challenges

Parallelizing software is a complex endeavor. It usually requires a good amount of
prior refactoring work, specially to remove or reorder task dependencies, expose paral-
lelism, protect resources that must be shared, and duplicate the ones that do not. These are
some of the most common obstacles in a parallelization effort. While overcoming them
does not guarantee a well-performing parallel code, failing to do so can certainly limit the
degree of parallelism achieved and, more dangerously, even lead to erroneous results in
case of unnoticed race conditions. Most of the challenges faced during this project involve
two of these issues: task reordering and shared resources. In this section we will describe
some of these obstacles. Some of them only apply to multi-threading, and some apply to
both thread- and process-based parallelism.

4.1 Accessing the Object Store

For each file that needs to be written, the checkout machinery must first load its as-
sociated blob from the object store. An internal API takes care of all the work associated
with locating the object (which may be either in loose or packed format), reading the
data, inflating, and delta-reconstructing it. This is a considerable amount of work, and it
is pretty time-consuming, as previously discussed; so it is in our best interest to perform
the loading of different blobs in parallel. However, there are many global resources in the
object reading code:

« The list of packfiles: a global list of packfiles which may be opened and clone
throughout the execution of the Git process.

« Delta base cache: Objects stored in packfiles are allowed to be deltified. On the
process of reconstructing the delta objects, the same base might be required by
more than one delta. To save time, Git uses a LRU in-memory cache of already read
bases, which is shared among multiple threads.

« Pack windows: Packfiles hold many objects in a single binary file. To read these
objects, Git uses memory mapped sections called pack windows. These can be
invalidated for a number of reasons, such as when Git needs a new window and the
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maximum number of opened windows was reached. The list of windows is global,
which means that the usage and disposal must be protected in multi-threaded code.

« Other global variables: The object reading code keeps track of some statistics
like the number of mmap calls and the maximum number of simultaneously open
mmap windows. This data is stored in global variables, which are read and written
during checkout. Finally, there are also function-scope static variables, which are
persistent across multiple function calls and also shared among the threads. These
variables are commonly used in Git either to avoid the cleanup section in functions
that would otherwise need to release the memory before returning or to return data
that the caller itself does not need to release after the use.

In a previous work (BERNARDINO et al., 2020) we identified that the object decompres-
sion phase (i.e. reading the data from disk and inflating it, but not including the delta
reconstruction) was one of the most time consuming steps in git grep. Some experi-
ments using the Chromium repository as data showed that decompression accounted for
up to one third of the total execution time, followed by regex functions with 28% and
locking functions with roughly 13%. At that time, we introduced! a very coarse-grained
mutex to the object reading code, which made it possible for multiple threads to safely
read objects concurrently with a good performance. The catch was to protect everything
but the zlib decompressing calls, which are already thread-safe. This approach allowed for
a significant performance boost on git grep without risking to introduce race conditions.
A by-product of that work is that we now have an API that could be used to read objects
with parallel threads and overcome the challenges listed above.

However, the big lock added in that work only covers object reading functions. Check-
out also uses global shared resources in other parts of the code that are not yet protected.
Another problem is that some of the global resources accessed by the object reading ma-
chinery are also used by other parts of the codebase. One of the best examples is the global
struct the_repository, which stores many important information about the repository
where Git was invoked. This means that it is not sufficient to wrap the object reading
functions with locking mechanisms, but we also need to evaluate what other parts of the
code use the same global resources and make sure to also acquire the lock before execut-
ing them. Without this, the object reading lock cannot fully accomplish its function.
When working at git grep, this evaluation was sort of easy as the code already had
higher-level locks which we just needed to replace with the new object reading one. But
this would be a whole different effort on checkout, which does not have any lockings or
previous indications of thread-unsafe function calls.

4.2 Path Collisions

This refers to another form of resource sharing: the file system. Path collisions happen
when the file system folding rules make different path names end up corresponding to
the same file on disk. It can happen, for example, with case-sensitive files (like “FILE”
and “file”) on a case-insensitive file system. However, case-sensitivity is not the only

131877c9aec (“object-store: allow threaded access to object reading”, 2020-01-15): https://github.com/git/
git/commit/31877c9aec21e0824fd4fcf415069cf8dfaedb72
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mechanic that can lead to collisions. See, for example, Unicode normalization: the Unicode
character “4” can be represented with two different sequence of bytes: 0303 0244 (in
octal), which is the code for “Latin Small Letter A with diaeresis” or 0141 0314 0210
which is “Latin Small Letter A” plus the “Combining Diaeresis”. Some file systems will
convert the Unicode paths to a standard format and thus, these different representations
of “4” will be considered the same.

Some folding rules are even more complex. For example, the FAT file system on MS-
DOS used 8.3 filenames also known as “short names” (Microso¥T, 2021). This format
allowed for a maximum of eight non-period and non-space characters, optionally followed
by a period and one to three other non-period and non-space characters (which would be
the file extension). For backward-compatibility with legacy applications, modern NTFS
file system on Windows still support the 8.3 filename format. When this is enabled, the
applications can refer to a file using either its long name or the automatically generated
8.3 name. This conversion from long to short name can be a source of path collisions. For
example, the file “.txt” is not a valid short name, so it would be automatically assigned the
short name “txt~1". Therefore, if we try to write “txt~1” after “.txt”, the two would collide
on disk. Furthermore, some Windows versions will ignore trailing spaces and periods
too?, so “txt” and “txt~1" would also refer to the same file of “.txt” and “txt~1".

Path collisions bring many challenges to a parallel checkout implementation. Multiple
threads/processes could be working on different paths without knowing that they corre-
spond to the same file on disk, which could lead to a variety of race condition problems,

like:

« The threads/processes could end up racily writing to the same regular file, thus
producing a dirty result.

« A thread/processes could fail because a path it expects to be missing in the working
tree was in fact already populated by another thread/process.

« Two threads/processes might compete in removing and creating files at the same
paths. Depending on the order of operations, this could lead to errors on Windows,
where applications cannot remove files with open descriptors.

These examples may cause erroneous results or even failures, but there are even worse
possibilities when path collisions are not handled properly. Some of which can imply
in security risks. If a symbolic link collides with the leading directory of another file
being checked out and we fail to detect that, Git may end up following the link and writ-
ing the file at the wrong place. The path can possibly fall outside the repository, and
even overwrite user data. Even worse, a maliciously crafted repository could abuse this
oversight in the checkout implementation to drive remote code execution (RCE) attacks,
by making the symlink point to “. git/hooks” and writing a “post-checkout” hook. The
“hooks” mechanism is a way for users to specify custom scripts that should be executed
upon specific Git events. The “post-checkout” hook is executed write after checkout, so if
Git can be tricked to write repository files at “. git/hooks” during checkout, it would be
possible to run a malicious script without user consent. This could even be used during a

2 https://github.com/git/git/commit/1d1d69bc52dcc7def5hb2edbd165cc0ade3911c8e
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clone operation, which is one of the core features of Git. We will discuss more about this
specific security challenge in Sections 6.2.1 and 6.2.2 and in Appendix D.

Path collisions are specially challenging because the system does not provide a uni-
versal API to detect whether two path names will collide on disk without actually writing
them to check. Of course, applications can make some inferences based on the file system
type and operating system, but this approach is not robust as there can always be a file
system that the application is unaware of. It would not be feasible to implement all folding
rules both extensively and safely.

In Chapter 2 we mentioned that the sequential checkout handles path collisions just
like any other “present but not up-to-date” file. To recap, before creating the file, check-
out_entry() uses lstat() to check that there is no file at the same path in the working
tree and that the dirname components are all real existing directories (not symlinks). If
the second check fails, due to missing components, the function creates then and proceed
with the checkout. However, if any of these checks fail due to an already existing file, it
either aborts the operation or removes the file that is preventing the entry from being
checked out and moves on.

In other words, when there is a path collision among two or more entries to be checked
out, the sequential code simply check out each one of them, removing the previous version
from the working tree and writing the new one. This may sound like unnecessary work
(and it possibly is), but we do not expect path collisions to happen that often. Furthermore,
since collisions may leave the repository in a state that is not really useful for its users,
the colliding files are usually renamed when the owners of the repo want to support file
systems that may experience such collisions.

It is worth mentioning, that while the sequential checkout approach for colliding paths
may be bit expensive, it has a nice perk regarding the state of the index after checkout:
because all colliding files are in fact written (although only the last one survives on
disk), all of them will be stat()-ed and the associated index entries will be populated
with info like file size and mode. By filling these metadata fields, we save time on later
git status operations as they do not need to read the files’ contents to check that they
are dirty. But we will discuss this with more details later.

Path collisions are not much of a “special case” in the sequential checkout code. That
is, Git would already have to lstat() the leading directories and the basename before
creating the file, so collision handling almost comes as a free bonus from these mechanics.
However, for parallel checkout, the 1stat () check would not be sufficient as there is no
guarantee that another worker will not have created the file in between a positive check
that the path was empty and the actual file creation. The same goes for leading directo-
ries: one worker could successfully evaluate that all components are real directories and
proceed to the file creation, without knowing that another worker replaced a directory
with a symlink in the meantime.
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4.3 Using Stale Data From the lstat() Cache

In Section 2.6 we discussed how Git caches some lstat() calls during checkout and
the importance of this for performance. Caching is indeed a very important technique, but
it must be used with great care. One could ask how Git can be sure that the cached leading
directories are still valid in case of path collisions during checkout. That is, the checkout
machinery may remove previously created directories if they collide with another entry
it needs to check out, so how does it keep the cache consistent with the working tree
changes and avoid later uses of stale information? One of the ways that the sequential
checkout protects itself against a cache misuse is by checking out entries in the index
order. As the documentation of the Git index format says, “index entries are sorted in
ascending order on the name field, interpreted as a string of unsigned bytes (i.e. memcmp ()
order, no localization, no special casing of directory separator /°).” (G1T DEVELOPMENT COM-
MUNITY, 2021a) Therefore, if the entries are checked out following the index order, it is
still possible that the information from the cache becomes outdated, but we can be sure
that no outdated information will ever be used, as checkout will not interleave entries
from different directories. In other words, the ordered checkout can rely on the invariant
that, once it start checking out files from a new directory, it will never go back to any
previously visited directory to write more files

It may be a little tricky to visualize this property, but it becomes clearer with a concrete
example: pretend we have the files A/B, A/C, and a. In the index, they will be sorted in
the same order that they were introduced here. Notice that if we check them out in this
order on a case-insensitive file system, we will eventually replace the directory A with
the regular file a, while still caching the information that A is a directory in memory.
However, that is completely fine as, at the time this happens, the checkout machinery
will have already checked out all files from the A directory, and it is not going back to
it.

Of course using the index order to prevent cache corruption only works because the
cache lookup code use exact matching to compare the query path with the cached com-
ponents. If it were to perform case-insensitive comparisons, or even normalize Unicode
characters, we could in fact end up using invalid data from the cache. To give an example,
imagine the checkout of files AA/b, Aa, and aa/c (already presented in index order). Since
the Istat cache uses exact matching, when we call has_dirs_only_path() for the last
path, it will not say that aa is a directory, even though it has cached the (now incorrect)
information that AA is. And again, it is fine that it caches this because we will not check
out anything with the AA/ prefix for the rest of this execution.

Another case to consider is the removal of files that were in the index but should no
longer be after the current checkout. Typically, the high level unpack_trees() will re-
move these files in a separated loop before it starts processing the file creations. However,
the lower level checkout_entry () API can process both cases, offloading the removals
to unlink_entry (). This capability is used by the git checkout command when it is

% As we later found out, the classic sequential checkout may in fact write entries out of order under two
circunstancies. In these cases, the code was susceptible to invalid uses of the 1stat () cache. See Appendix
D for more information about this finding and the fix.
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given the --no-overlay option. Since unlink_entry () will also remove leading direc-
tories when they are left empty after a file removal, it seems possible that a subsequent
file creation might end up using outdated cache information regarding a path that was
a directory before being removed. However, this cannot really happen because check-
out_entry() and unlink_entry () use different functions from the 1stat () cache API,
and those cache different types of entries; and as a safety measure, the cache gets reset
whenever the caching options changed between uses.

We have shown that, if checkout follows the index order, it will not use stale data from
the 1stat() cache. However, the order assumption is hard to satisfy on a parallel check-
out implementation. If we do not take care to invalidate the cache when appropriated, or
avoid using outdated information, the parallel workers might end up trusting that a path
is a valid directory when it is not. This can lead to the same kind of problems described
in Section 4.2. If the cached directory gets removed or replaced with a regular file (due to
a path collision), the checkout worker will just fail to write out the entry. However, if it
gets replaced with a symlink, the worker will blindly follow the link and write the file at
the wrong place. The security implications described in Section 4.2 also apply here.

4.4 Filters and the Attributes Machinery

As mentioned in Section 2.5, tracked files can be filtered when checking in (by “clean”
filters) and out (by “smudge” filters). The specification about which filters must be applied
to each path are defined in a file called .gitattributes. Each directory of the project
can have its own .gitattributes, which will have higher precedence than the ones
before when evaluating the attributes for the files in that directory (and below it). There
are also global and system-wide files, which have the lowest precedence of all, and a
non-versioned repository-specific file at . git/info/attributes, which has the highest
precedence.

The filters applied when checking in files are called clean filters and the filters
applied when checking out blobs are called smudge filters.Regarding the way in which
each filter is executed, there are three classes: in-core filters, which are performed by Git
itself, without needing to execute a child process; external “one shot” filters, which are
commands/scripts invoked by Git to process a single blob or file; and long-running filters,
which can process many blobs with a single invocation. The last class requires the filtering
command/script to implement a protocol by which Git will feed it the blobs and collect
the results over time. One of the advantages it holds against one shot filters is that there
is no need to fork() and invoke the filter for every blob during checkout. But, of course,
this performance gain comes with a more complex implementation.

Long-running filters can also make use of the delayed checkout feature. This is a
mechanism by which filters can delay the response to Git, letting the checkout process
continue while the filter performs the conversion in the background for better perfor-
mance. Later, after all entries have been processed, Git will ask the filter again for the
entries that it required to be delayed. One of the most widely-used filters that make use
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of this capability is Git-LFSs*.

Filters must be handled carefully for a successful parallel checkout implementation.
Below we enumerate some of the challenges they impose. Most of these issues were orig-
inally raised by Jeff Hostetler, a Microsoft Engineer and Git contributor who had also
worked on another parallel checkout approach before. His original findings on the sub-
ject, as well as other challenges, can be found at his parallel checkout technical docu-
ment”.

1. Like the object reading code, the attributes reading and filtering sections also make
use of global resources which would need to be protected in a multi-threaded imple-
mentation. In particular, the data loaded from the different . gitattributes files
during checkout is kept in a global stack, which is not thread-safe. Merely protect-
ing the stack with a lock would probably not be a good approach: the attributes
machinery is optimized to handle paths in sequential order, and the concurrent
requests for paths in different directories could impact the performance.

2. Besides the blob smudging part, checkout_entry() might sometimes needs to
clean a working tree file to compare it with its associated blob and check whether
the file has unsaved changes. This operation uses the attributes code too, so it would
also have to be protected on a multi-threaded checkout.

3. Sometimes, Git may need to load the .gitattributes contents from its object
store, instead of the working tree (e.g. when checking out files from a directory
that was not in the working tree yet). In this case, the checkout machinery needs
access to an index state from where it will retrieve the hash of the . gitattributes
blob. However, on a multi-process parallel checkout implementation, the workers
might not have access to the modified in-memory index state of the main process. If
the implementation does not handle this, the workers might end up using outdated
hashes from the on-disk index.

4. External filters might have their own locking and/or non-concurrency assumptions
which we could break if Git starts spawning them in parallel. E.g. a filter could be
logging its operation on a shared file, expecting that no more than one instance of
the filter process will be running at any given time.

5. Long-running filters should persist throughout the whole Git execution. Support-
ing entries that require such filters on parallel checkout would impose additional
communication and synchronization challenges for the workers. We would either
have to synchronize their interactions with the filter to avoid races or elect a single
worker to communicate with the filter and propagate the results to the others.

6. Long-running filters may also use the delayed checkout capability, in which case
they can postpone the reply to some blobs. In this case, besides the communication
challenges, the workers would have the additional challenge of managing a queue
of delayed blobs and re-consulting the filter latter.

* https://git-Ifs.github.com/

> https://github.com/jeffhostetler/git/blob/0d97a158e274db3c59b3a6e382ec91b08d44fa8c/Documentation/
technical/parallel-checkout.txt#L336
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4.5 Parallel I/O

When we started this project, we already expected that parallel checkout would be
beneficial on networked file systems, where parallel connections can amortize the latency.
Furthermore, previous tests from 2008 (see Section 5.1) had already reported that paral-
lelizing the I/O operations on checkout could lead to a 4.5x speedup on NFS. However,
we did not know which gains could be expected on local file systems, specially on HDDs.
Furthermore, many aspects can affect I/O performance, which makes it difficult to pre-
dict — with sufficient generality and certainty — how parallel checkout will behave on
arbitrary repositories and machines. Some of these elements that influence performance
are: the access pattern (including number and size of working tree files and object files,
deltification, and compression level), the directory hierarchy in the working tree, the frag-
mentation of the files, the physical proximity of the different requests on disk, the type
of file system, mounting flags, and so on. Therefore, whether or not the I/O patterns from
parallel checkout would really produce any significant improvement on local file systems
was also a challenge in itself.

One of the effects that parallel checkout can produce on the system is to increase its
I/O queue depth. As GHODsNIA et al., 2014 defines, “I/O queue depth is the average number
of outstanding I/Os in the I/O queue at any point of time. The I/O queue depth can be increased
by issuing multiple I/O requests at the same time or issuing I/O requests with a rate faster
than the rate of handling I/O requests by device.” The ability to send multiple I/O requests
to a storage drive is called command queueing, and there are different technologies for it,
such as the Native Command Queueing (NCQ) for SATA — which allows a queue depth
of up to 32 jobs — or the technology present on NVM Express, which can achieve way
higher queue depths.

As we already discussed, increasing the I/O queue depth is very interesting for NFS as
the queued network requests can be processed in parallel and increase performance, but
what is the effect locally? For both the SSD and the HDD, increasing the I/O queue depth
may allow the I/O scheduler to reorder and/or merge the different requests into more
efficient access patterns and produce a higher throughput (e.g. a pattern that requires less
seeking). However, increasing the I/O queue depth produce even larger effects on the SSD.
As CHEN, Hou, et al, 2016 says “NCQ enables SSDs to achieve real parallel data accesses
internally. Compared to hard drives, NCQ on SSDs not only allows the host to issue multiple
commands to the SSD for better scheduling but, more importantly, it also enables multiple
data flows to concurrently exist inside SSDs.”

This has to do with the architectural organization of the device. As CHEN, Hou, et
al., 2016 describes, the design of SSDs promote a lot of potential for internal parallelism:
Their storage is usually split across an array of flash memory packages, which are con-
nected to flash memory controllers by multiple channels. Each channel can be used inde-
pendently. The packages can also be operated individually, allowing multiple packages
connected thought the same channel to interleave their operations. Inside the packages,
there are usually multiple chips (or dies), which can also execute commands in parallel
to the other chips. Finally, the chips typically contain two or more planes, and a given
command can be executed in multiple planes at the same time. This design allows the
operations at each one of these levels to be parallelized or interleaved, producing great
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opportunities performance-wise. HDDs, on the other hand, usually have a single actuator
to read and write the data from the platters, and it typically executes a single operation
at each time.

Although increasing I/O depth is likely to help SSDs, CHEN, Hou, et al., 2016 showed
that mixing reads and writes may produce a negative performance interference on the
SSD. The authors enumerate many possibilities for what may cause this performance
penalty, such as the competition for critical hardware resources on the SSD and the dis-
patch of background tasks (like read ahead and asynchronous write back) which could
impact the foreground operations. In their tests, they saw a bandwidth reduction of 4.5x
on sequential writes when performed concurrently with random reads (which might hap-
pen on packfiles, although they tend to have great locality). It remains to be seen whether
this may happen with parallel checkout, but it should be noted that, in that test, the I/O
operations were issued directly on the SSD through block devices (with no partitions or
file systems) and they used synchronous mode. Git checkout, on the other hand, does
not perform synchronous writes, so it can achieve faster writing bandwidths by taking
advantage of the file system cache in memory. For the same reason, it is possible that we
do not see the read/write interference in the checkout workflow.

Still discussing the results from Cuen, Hou, et al., 2016, we see that the parallelism on
SSD can also negatively impact the detection of sequential data access and the read ahead
mechanism, which prefetches data in order to make them available for the application
later. As we saw on Table 3.2, such mechanism is quite important for the packed object
case on the SSD. However, the study shows that the performance impact of parallelism
on read ahead only happens for a small concurrency level. For higher concurrency levels,
the benefit from parallel requests surpasses the losses from an impaired read ahead.

Another consideration to keep in mind is the operating system where Git is running
at. Git was originally created to run on Linux, as its initial purpose was to version control
the code from the Linux kernel itself. But over the time it was quickly ported and adapted
to run on Windows, MacOS, BSD, and other systems. Some of these follow the POSIX
specification, so the adaptation was easier. On others, however, it was necessary to im-
plement small wrappers to emulate functions that were already being used by Git. These
could either be functions that were not implemented in the same way on the OS that Git
was being adjusted for, or even functions that did not exist natively. One of the downsides
of this adaptation is that some operations ended up being a bit more expensive on some
of these operating systems. One commonly mentioned example in the Git mailing list is
the stat() wrapper for Windows. Therefore, the parallelization of checkout may also
produce varying results for the same machine using different operating systems.

Finally, there were two additional I/O concerns related to the file creation order. First,
the directory locking. The kernel needs to acquire an exclusive lock at the directory level
when creating a file inside it. The concurrent creations from parallel checkout could thus
produce and be slowed down by lock contention on the kernel. However, there is a simple
mitigation for this: we can distribute the paths to the workers in contiguous chunks, so
that it minimizes the chance of having more than one worker creating files on the same
directory. The second concern comes from a thread at the Git mailing list (BELLER, 2016).
In 2016, it was conjectured whether the arbitrary file creation order from parallel check-
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out could slow down some subsequent read-intensive operations. However, as another
developer named Nguyén Thai Ngoc Duy later replied (Duy, 2016b), this is to close to the
file system implementation, and modern file systems should already use mechanisms to
speedup the pathname lookup (such as b-trees and indexes), making the creation order
have no relevance to performance.

4.6 Portability

We already mentioned that Git implements some wrappers to emulate functions that
are not available on a given operating systems. Still in the topic of portability, we should
avoid using non-portable functions (without conditional macros or wrappers for other sys-
tems), as well as functions that do not behave the same on different systems. For example,
at some point during development we attempted to auto-detect whether the underlying
file system is an NFS mount and auto-enable parallelism if so. However, this proved to be
quite trick to do in a portable way, and even when we tried to limit the feature for Linux
systems only, we found out that the function we were using, getmntent (), had behavior
divergences between different implementations of the C standard library, namely GNU’s
glibc® and musl’.

Another consideration related to portability is the use of the fork() syscall to cre-
ate a copy of the running process. Subprocesses are a good alternative to overcome the
thread-unsafe issues on a parallel checkout implementation, even though they require
extra work for communication. Nonetheless, child processes created with fork() with-
out a subsequent exec () inherit the memory pages from their parent, so the initial set
of tasks could be easily retrieved from memory. Furthermore, Linux forking works with
“Copy-on-Write” mechanics, so it puts off duplicating a shared page until a process needs
to write on it, which saves both time and memory. However, fork() is not available on
all systems supported by Git. A parallel checkout implementation that depends on the
above mentioned mechanics would either have to fallback to threads where fork() is
unavailable or disable parallel support completely. Fortunately, Git has an internal API
to create and manage subprocesses, which uses fork () followed by exec (), on systems
that support these functions, or an alternative subprocess creation routine in others that
do not. However, note that by using this API, we cannot make use of the shared “Copy-
on-Write” memory mechanics from fork() as it is not portable. So the child processes
will start with a clean image and the data must be sent to them in another way, such as
through pipes.

As we have seen in this chapter, parallel checkout comes with important challenges,
from race conditions on shared resources to parallel performance on I/O devices and lim-
itations due to portability. At the next chapters, we will refer to these challenges when
discussing previous parallel checkout approaches and, then, the final version that we sub-
mitted to the Git community.

® https://www.gnu.org/software/libc/
7 https://musl.libc.org/


https://www.gnu.org/software/libc/
https://musl.libc.org/

Chapter 5

Related Work

The idea of parallelizing checkout is not new. In fact, we can see discussions about it
in the Git mailing list from as old as 2008, when Git was only three years old. A lot has
changed in Git’s code base since then, with over 30K commits and 1M new lines of code,
test, and documentation. Over the years, parallel checkout was suggested in at least two
other moments, with different approaches to the same idea: one in 2016 and another one in
2020. A lot of the code and solutions developed for these two previous efforts was re-used
to compose the final version we present at this work. Therefore, parallel checkout is in its
nature a collaborative endeavor. In this chapter, we will go over some of the details from all
the three previous visions of parallel checkout since 2008, and also highlight a few other
checkout related optimizations that were merged upstream during these years.

5.1 Approach I: 2008

The first parallel checkout approach had mostly the same motivation that we had
for this work: to make Git faster on NFS. The series (P1cKENS, 2008) submitted by James
Pickens as an RFC (i.e. Request for comments), was very short: only composed of two
patches, adding a total of 165 lines.

James distributed the to-be-checked-out index entries among multiple threads and
used a mutex to protect the directory creation, the blob loading, the attributes gathering,
and the filtering sections. The author reported a 4.5x speedup on NFS (best run) when
cloning the Linux kernel repository (which was around version v2.6.28 at that time). How-
ever, the author also pointed out a 0.73x slow down when repeating the same test on a
local setup (P1ckens, 2008). This might have happened because I/O was not the main
bottleneck locally, and the locks degraded performance due to contention overhead. Or
perhaps I/O was the bottleneck but the operation overlapping had a negative effect of
stressing and slowing the drive. This shows, in practice, some of the challenges we de-
scribed on Section 4.5.

At the time this version was proposed, the 1stat () cache was quite young and yet to
see many of the improvements it would receive in the next years. The checkout_entry ()
API did not make use of it yet, so 2008’s parallel checkout implementation did not have to
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deal with the challenges described at Section 4.3. However, since this version performed
file creations and removals in parallel and also did not employed any mechanism to detect
path collisions, it was subjected to the problems described in Section 4.2, including the
security implications. Regarding the blob loading and the attributes reading and filtering
phases, this version was mostly safe from the issues raised at Sections 4.4 and 4.1. These
code sections were protected by the added lock, filters were spawned one at a time, and
there was no support for long-running filters when the RFC was developed. However,
the lock was not acquired before calling the function that checks the state of the path
relative to its index entry, and as mentioned in Item 2 of Section 4.4, this function might
also make use of the attributes and filtering machinery. Like this function, there could be
other spots that used global resources without acquiring the added lock. Unfortunately,
due to the thread-unsafe nature of many Git functions, it gets quite difficult to ensure
that all global resources are protected when the threaded code uses different subsystems
of the codebase, and access different levels within them.

Linus Torvalds, the creator of Git and Linux, replied to that series with some concerns
about the design. He suggested to replace the locking strategy by one of these two op-
tions: a work queue for the file write-outs, allowing everything else to run sequentially
and without locks while dispatching only the queued writes to the threads (which was
the main target of that parallel implementation anyway); or working to make the object
handling code thread-safe and implement a broader parallelism without any queue nor
locking, which could possibly improve performance even further by allowing not only
I/O parallelism but CPU too. This alternative had the potential to produce speedups on
local file systems as well.

The original author acknowledged the elegance of the lockless suggestion, but also
pointed out that it was, unfortunately, significantly more complex and time-consuming
to implement. Furthermore, they worried that the refactoring option (to make more code
thread-safe and allow greater parallelism) could possibly produce only a small improve-
ment in performance which would not be worth the magnitude of the required changes.
Regarding the work queue alternative, Linus himself later raised another issue: Git has to
update the index after each file checkout, and it has to access global states to do so. There-
fore, this phase would not be able to run locklessly. There was no further development
on that series after these discussions.

5.2 Approach II: 2016

The second approach to parallelize checkout came in 2016, by Nguyén Thai Ngoc Duy.
He first shared a prototype in the Git mailing list (Duy, 2016a), but later refined it into
a more complete series of patches (Duy, 2016d). This implementation was considerably
more voluminous than the first parallel checkout effort, with 12 patches and 730 added
lines, but it was very elegant. The author used multiple child processes to overcome the
thread-unsafe issues in the object reading code and the attributes loading code. As he
pointed out, this approach comes with some drawbacks, such as the inter-process com-
munication cost, higher memory usage, and not sharing some in-memory caches among
the workers (like the delta base cache). Still, it was way less intrusive (and cumbersome)
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than making all the necessary changes to overcome the thread-unsafety of the object
reading code.

This implementation took a similar approach to what Linus suggested in 2008 with the
“work queue”. Steps like checking the working tree for unsaved changes, removing the
old file, and creating the leading directories were still performed sequentially; but the blob
loading, filtering, and the file writing were delayed, using a queue. That is, when the code
reached these steps for any particular entry, it checked if the entry is eligible for parallel
checkout and enqueued it for later if so. Otherwise, checkout proceeded as normal. At
the end of this “pre-processing” phase, the enqueued entries could then be offloaded to
the worker processes for the actual write out. The implementation considered all regular
files eligible for parallel checkout, but symlinks and submodules were not.

As for communication, the main process creates a pipe for each worker process and
uses a poll() loop to monitor when the pipes becomes available for reading or writing.
Depending on the direction, the main process either sends more work or reads the status
report from the worker. The data sent to the workers are the SHA-1 hash and the path-
name of each file that needs to be checked out, and the status report received from the
workers contain how many successful tasks it completed and/or if there was any failure.
Note that the workers do not send any additional information about the written files, so
the main processes still needs to stat() them in order to update the index. Parallelizing
the stat () calls could perhaps improve performance even further on NFS but, of course, it
would increase communication costs. Finally, the messages are exchange using Git’s pkt-
line format which is “a variable length binary string” (GiT DEVELOPMENT COMMUNITY,
2021c).

This version allowed more parallelism than the first one. Furthermore, as it also par-
allelized the object decompression phase, which can be one of the main bottlenecks on
local file system checkouts, it could potentially benefit more users besides the ones on
NES. In fact, the author reported an approximately 2x speedup doing a full checkout of
Linux-2.6 in his local Linux machine, with ext4 file system.

Regarding blob conversions, this parallel checkout implementation did not have to
deal with long-running filters, as they were not yet supported back in 2016. However,
one-shot filters were allowed to run concurrently in this version. Another consideration to
make is about the attributes loading: as mentioned at Item 3 of Section 4.4, this operation
requires access to an in-memory index state to get the hashes of the .gitattributes
blobs whenever they must be loaded from the object store instead of the working tree.
However, the worker processes do not have access to the main process’ index and, in-
stead, end up using the version that was on-disk before checkout, which would likely be
outdated by that time. If the series had been further developed, this could be fixed by
sending the necessary data to the workers. This is exactly what the Approach III did, as
we will discuss later.

Some of the path collision issues we raised in Section 4.2 were present in this version:
to handle collisions, the code relied on the stat () checks from the “pre-processing” phase
and performed no additional checking during the parallel phase. This means that parallel
workers designated to write paths that collide with each other would end up racily fight-
ing for the file creation. Since regular files are created with the 0_EXCL flag, one of the
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workers would succeed and the others would simply fail and display an error message.
This behavior would diverge from what the sequential checkout does, but it does not im-
pose any security problems. The more serious case would be on dirname collisions. The
workers trust that the main process created all the leading directories of the enqueued
entries before spawning the workers, so they do not check again if each leading path is
valid. If a symbolic link — which is not eligible for parallel checkout, and thus, is created
before spawning the workers — replaces one of the leading directories of an entry in
the parallel queue, the worker which gets assigned this entry will blindly follow the link.
Therefore, the checkout code would be vulnerable to the security issues mentioned in
Section 4.2. We must highlight, however, that this version was a prototype which ended
up not being submitted to the Git mailing list. If the author had decided to continue its
development, these issues would likely have been further analysed and tackled in a safe
manner.

After working more on parallel checkout, Duy found that while it reduced the Linux-
2.6 checkout time by almost half in one of his laptops, it actually made the same bench-
mark slower in another laptop (Duy, 2016c). He conjectured that the second laptop proba-
bly had a slower disk, which makes I/O the major bottleneck during checkout; and spread-
ing the I/O operations over many processes could be stressing the I/O scheduler instead
of helping. Because of these results, Duy decided not to push the series forward, but he
left the patches in his public Git repository for anyone interested in trying it out.

5.3 Approach III: 2020

The third parallel checkout approach, authored by Jeff Hostetler, was under develop-
ment in early 2020 (HOSTETLER, 2020). He did not finish and submit the patches to the
mailing list, but plenty of his work (and Duy’s) was used in the version we submitted
later.

Like the 2016 approach, Jeft also decided to split the index entries among multiple
child processes to work around the thread-safety issues in the object reading code and
other parts of the codebase. Jeff wrote a technical document! about his parallel checkout
implementation, where he also enumerated all threading issues he found associated with
the checkout machinery to justify the decision about using child processes for the work.
This version also used the pkt-line format for inter-process communication. However,
the protocol was a bit more complex, requiring an initial handshake between the main
process and the workers to establish the supported commands by which they can later
communicate. The main process is always the one to start a message exchange, issuing
the desired command.

This version focused on the unpack_trees() code, parallelizing the loop over the
CE_UPDATE cache entries. So it did not support direct checkout_entry () callers that
do not use unpack_trees (), like git checkout-index and git checkout <pathspec>.
Like Duy, Jeff also divided the entries in eligible for parallel checkout and ineligible. But
instead of classifying them inside checkout_entry(), he added a sequential loop over

https://github.com/jeffhostetler/git/blob/0d97a158e274db3c59b3a6e382ec91b08d44fa8c/Documentation/
technical/parallel-checkout.txt
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the unpack_trees() entries to collect the eligible ones in an array for later partitioning.
These entries exclude symlinks and submodules, but also regular files that require external
smudge filters (of any kind). With this limitation he avoided breaking non-concurrency as-
sumptions from the filters and the difficult synchronization issues regarding long-running
filters and the delayed checkout queue. This already solves three of the challenges enu-
merated in Section 4.4. The entries that are ineligible for parallel checkout are sequentially
written after the eligible ones. An interesting aspect that comes out of this decision is that
is not possible for symbolic links to replace already created directories of parallel-eligible
entries. So one cannot “trick” the workers to follow the symlinks, as these are only written
after the workers finish.

Jeff also took a clever approach at the evaluation of the attributes for each path. Re-
member that the attribute rules are loaded from the .gitattributes files from the dif-
ferent directories of the project and cached in a global “attributes stack”. Then, for each
path, the conversion machinery looks at the stack, removes and adds layers as necessary
(e.g. if the path is inside a different directory than what was previously loaded) and re-
turns a struct conv_attrs for that path. This struct contains all the information about
which filters must be applied to that path, as collected from the attributes files. Jeff’s par-
allel checkout implementation makes use of this struct in two moments: first to decide
whether an entry is eligible for parallel checkout, and then to smudge the blobs during the
execution of the parallel workers. However, the attributes lookup code and the smudging
code were coupled together, so Jeff separated them and used the lookup code during his
first sequential loop to access the eligibility of an entry, taking care to save the struct
conv_attrs together with the entry. This way, we can lookup the attributes only once,
sequentially, and them send them to the workers for smudging. This is important because:
(1) it solves the problem describe in Item 3 of Section 4.4, which is that workers cannot
properly collect the smudging attributes by themselves, as this task requires access to
the index state of the main process; and (2) it has a positive impact on performance as
the attributes can be collected only once and in sequential order, which the attributes
machinery is already optimized for (addressing Item of Section 4.4).

The only question is how to send these extra bytes to the workers. One possibility
would be to convert each int and enum to strings and parse those in the other end, but
that adds extra complexity. Instead, Jeff packed all the fieds he wanted to send to the
workers in a C struct, casted it to a byte stream (more specifically, to a char array), and
send it through the pipe wrapped in a pkt-line. The cleveness of this approach is that it
requires no extra parsing on the workers, instead, they can directly cast the payload back
to the C struct.

After the first classification loop, the array of eligible entries is partitioned across the
worker processes, which are then able to load the blobs, smudge the contents, and write
the results all by themselves. Jeff also charged the workers with the task of stat() or
lstat()-ing the written paths and sending the results back to the main process. This
addition relative to the previous approaches strives to improve performance on systems
where stat () is more expensive.

Jeft divided the worker processes into multiple threads:

« One command-and-control thread, responsible for communicating with the
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main process and returning data. (On failure, the workers communicate the error
to the main process which retries writing the entry with more context.)

« One blob preload thread, to sequentially load the blobs that will be required later
(and optionally smudge them).

« One or more writer thread(s), which write(s) the blobs to the working tree (smudg-
ing them if the blob preload thread did not do it already). As we will see next, it only
makes sense to use more than one writer thread when using the “asynchronous”
mode.

This version of parallel checkout was able to operate in two modes: synchronous or
asynchronous. In synchronous mode, the checkout code path stays mostly the same as
the classic sequential code; the major difference is that the blobs are loaded and smudged
in parallel. In this mode, each worker process has only one writer thread, and the writes
are coordinated by the main process, done one at a time at the regular index order. The
loop over the CE_UPDATE entries from unpack_trees(), in the main process, still calls
checkout_entry () for each entry and all steps are performed as usual, except by the file
writing (Step 4 from Section 2.5.2). At this point, the code path is deviated to a function
which signals the worker process assigned with that entry to properly perform the writing.
Note that the working tree checks are all performed by the main process. Jeff mentions
that this mode should be appropriate for all current users of the unpack_trees() API
— but those that start with a clean working tree may take more advantage of the next
mode.

On asynchronous mode, the main process does not use checkout_entry() and in-
stead let the workers directly create the files in the working tree without coordination
with the main process. The workers also use multiple writer threads to create the files.
Note that this mode does not perform any working tree checks (to see, for example: if
there is an already existing file which should or should not me overwritten; if the path
is already up to date; if there was a path collisions; etc.). The workers assume the path
is clean and try to create the file (and its leading directories); if this is not the case, they
report an error and let the main process retry it sequentially later. Due to these mechanics,
this mode can only be used when the working tree is being populated for the first time, e.g.
on git clone. Otherwise, since the workers do not check each component of the paths
to make sure they are real directories, they may follow symlinks when writing the files
which, as previously mentioned, can lead to errors and security issues. (Note, however,
that this only refers to symlinks already present in the working tree; new symlinks are
ineligible for parallel checkout and, thus, are checked out after the eligible entries.)

On both modes, the reading threads load the blobs in “the background” to have them
ready for the synchronous or asynchronous writing threads when needed. Because of
these mechanics, this implementation cannot read the blobs using the streaming interface,
so large blobs will have to be held at memory in their entirety, increasing the memory
footprintz. Nevertheless, Jeff mentions in his technical document that, with some refac-

2 Note that the sequential checkout already reads packed blobs without streaming when their uncompressed
size falls below the core.bigFileThreshold setting (512MB by default). Only packed blobs above this
size (uncompressed) and loose blobs are read by streaming.
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toring, it should be possible to perform streamed smudging and writing, which would
already save some memory.

This version of parallel checkout was significantly more complex than the two pre-
vious ones, with a total of 36 patches, divided into API changes (to the filtering and
unpack-trees subsystems), thread-safety conversions, instrumentation, and the actual par-
allel checkout implementation and tests. In total the patches changed 32 files with 4917
line additions and 76 deletions. Although this version was more robust, the size of the
patches could unfortunately also make it harder to review and maintain the code. The
robustness also came with a higher configuration complexity, with four exposed settings:
the size of the blob preload buffer, the number of writer threads, the number of worker
processes, and a threshold for the minimum number of files to use parallel checkout. The
checkout mode (sync or async) defaults to synchronous, but Jeff had plans to use different
defaults for each command/situation.

Regarding our goal to optimize checkout on networked file systems, we have seen on
Section 3 that the file creation and the data flush (either through fstat() on an open de-
scriptor or close()) are the two dominant bottlenecks. However, this parallel checkout
approach unfortunately only parallelizes these steps on async mode, which has a very
limited usage. Additionally, pathspec-limited checkouts (i.e. git checkout -- <path-
spec>) and git checkout-index would not benefit from parallel checkout, as they call
checkout_entry () directly.

5.4 Other Checkout-Related Optimizations

All parallel checkout implementations mentioned in this chapter, as well as this work,
focus on the working tree update phase of checkout. As already mentioned, it is beyond
the scope of this project to optimize other tasks involved in a checkout operation, like
the tree walk and index parsing phases. However, these sections of the code base also
have been receiving performance improvements over the years, in different fronts. In this
section we will showcase some of the performance work developed in these areas:

In 2007, Linus Torvalds optimized * some index operations at the tree merge code, used
by unpack_trees(), to avoid removing entries in the in-memory index array (which
requires shifting the remaining ones) when the entry would have to be re-added later
with updated contents (thus, moving memory again to make space for the entry). By
eliminating these unnecessary movements in the index array, the patches lead to over
9x speedups in operations with large trees (50K+ paths) where this code was the main

3 See patches:

« 288f072ec0 (“Optimize the common cases of git-read-tree”, 2007-08-10): https://github.com/git/git/
commit/288f072ec033cf917eed949119428db3626ddc71

« d699676dda (“Optimize the two-way merge of git-read-tree too”, 2007-08-10): https://github.com/
git/git/commit/d699676dda5fdf0996601006c3bac2a9c077a862

« 566b5c057¢ (“Optimize the three-way merge of git-read-tree”, 2007-08-10): https://github.com/git/
git/commit/566b5c057c452d04605805ea2f7af210c6fb9b59
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bottleneck (e.g. a branch switch in a repo with lots of files but with very few differences
among the two branches).

Two years later, Kjetil Barvik optimized* yet another index operation in un-
pack_trees()’s call chain: after the tree merge, the function calls check_updates()
to update the working tree, add stat data in the index for the newly written files, and
remove index entries which were marked to be removed together with their working
tree copies. The last step used to be performed by calling memmove () in a loop, shifting
entire portions of the index array to the left in order to overwrite a single entry. This was
done for each entry that had to be removed. Kjetil replaced this code by a smarter loop
which uses two pointers to accumulate the entries that should be kept in the array at its
left portion, without needing to repeatedly move larger chunks of memory.

Index operations were not the only target of performance optimizations in the past
years. In 2018, for example, Nguyén Thai Ngoc Duy optimized® the tree walk using the
cache-tree index extension. The idea behind it was to compare the OID of a tree with
the information on the cache-tree extension (stored in the index file of a Git repository)
and avoid walking the trees for which the contents are already known in the index. This
saves I/O and CPU time by avoiding to read and decompress many tree objects (trees and
subtrees). Duy reported that a “git checkout -” on the Webkit repository (275k files)
went from 2.56 seconds in his machine to 1.94 seconds after the patch. With a follow up
patch® to reuse still valid cache-tree data, Duy further reduced the 1.94 seconds to 1.61
seconds.

Other examples of performance optimizations that unpack_trees() received over
the years include:

« The Istat cache was improved to also cache the last full directory path detected
(until then it only cached symlink entries), speeding up checks on deep directory
structures; as the components would no longer have to be Istat-ed again for each
path. (Linus Torvalds, 2008).
https://github.com/git/git/commit/c40641b77b0274186fd1b327d5dc3246f814aaaf

+ The one-way merge code was taught to avoid calling lstat() (and comparing the
results with the associated index entries) when it is not asked to update the working
tree (Martin von Zweigbergk, 2012).
https://github.com/git/git/commit/686b2de0ceb2c5a1fb6c8822a8aceb8a05e2fc76

« File system monitor support was added, to speed up detecting of file changes (Ben
Peart, 2017).
https://github.com/git/git/commit/883e248b8a0fd88773cb902ab8e91273eb147d07

Finally, as we briefly mentioned in Chapter 2, that some file system logic was dupli-

%36419c8ee4 (“check_updates(): effective removal of cache entries marked CE_REMOVE”, 2009-02-18): https:
//github.com/git/git/commit/36419c8ee41cecadf67dfeab2808ff2e5025ca52

> b4da37380b (“unpack-trees: optimize walking same trees with cache-tree”, 2018-08-18): https://github.com/
git/git/commit/b4da37380b7774248086f42bcd59397a44elac79

6 836ef2b69f (“unpack-trees: reuse (still valid) cache-tree from src_index”, 2018-08-18): https://github.com/
git/git/commit/836ef2b69f3a8668c35a537715cf3bbc08fdcf39
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cated around unpack_trees () and checkout_entry () inregards to working tree checks.
These duplications, unfortunately, cannot be easily resolved as there are call paths that
do not pass through unpack_trees(); and even the ones that do, need the checks from
checkout_entry () for a variety of other reasons: to handle path collisions, to create miss-
ing directories, to remove outdated files, etc. The duplication is still bad for performance,
though, so it was previously suggested’ to separate the tree merge process in two steps,
doing every necessary operation on the index first, and only then inspecting the working
tree for unsaved changes. This refactoring was not yet implemented in unpack_trees(),
and it is beyond the scope of our project.

It is worth mentioning, though, that a similar optimization was implemented in the
merge machinery code, in 2020, as part of the new merge strategy called “merge-ort”.
This strategy produces a tree as a result and delays updating both the index and the
working tree to after the merge has been produced. Although this code is not used by
the “common” git checkout workflow (unless using --merge), this is a very inter-
esting project which deserves a mention not only for its performance benefits during
merge, but also new future possibilities that it brings, such as rebases on bare reposi-
tories (i.e. repositories without a working tree). The merge-ort strategy was developed
by Elijah Newren, and more information can be found in the author’s posts at: https:
//blog.palantir.com/optimizing-gits-merge-machinery-6-7bf887a131d8.

7 https://lore.kernel.org/git/20110222192632.GB4881@localhost/

49


https://blog.palantir.com/optimizing-gits-merge-machinery-6-7bf887a131d8
https://blog.palantir.com/optimizing-gits-merge-machinery-6-7bf887a131d8
https://lore.kernel.org/git/20110222192632.GB4881@localhost/




Chapter 6

Parallelizing Checkout

We have already discussed the theoretical concepts that surround the checkout ma-
chinery in Git, the challenges associated with its parallelization, and previous approaches
to this endeavour. In this chapter, we will tie these discussions together and present our
development process for the parallel checkout feature. We will review the most impor-
tant design choices for this implementation, discuss how we overcame the previously
presented challenges, and give an overview of the new code flow. The chapter is divided
in three sections. The first one presents the initial prototype we worked on, which used
thread-based parallelism, and discusses the issues that made us switch to process-based
parallelism. The second shows what changes and improvements were made to the first
prototype, specially around path collisions and the lstat() cache. Finally, the last two
sections discuss a little bit about correctness tests for the new parallel checkout feature,
and the main contributions from each previous approach, as well as this work.

6.1 Our First Prototype: Multi-Threaded Version

Early in development, we invested some time to study the latest sequential code as
well as the previous parallel checkout approaches shared in the Git mailing list. The goal
was to understand what were their key features, what worked the best in each version
and what not, what designs decisions were taken to overcome the challenges, and how
the current state of the code base would receive such changes. Using that knowledge, we
could then try to combine the best elements from each version, looking for good perfor-
mance, robustness, and easiness to review and maintain, while also avoiding any potential
downside that an individual approach might have.

We decided to use version II from 2016 as a basis for our implementation, because
it presented a good balance between code simplicity and robustness. Additionally, the
design adopted in this version supported all callers of checkout_entry (), not only the
users of the unpack_trees() AP and it always performed both blob loading and file
creation in parallel. Both these features are important for our goals because: 1) we can
extend the performance benefits of parallel checkout to more commands; and 2) the par-
allel file creation is essential for NFS, where this is one of the main bottlenecks, while the
parallel blob loading is a great opportunity to optimize checkout on local file systems too
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(specially SSDs, where inflation is the bottleneck). Approaches I and III focused specifi-
cally on unpack_trees (). Also, approach I only parallelized file creation and approach III
parallelized both operations only in async mode, which was available to a limited number
of Git commands.

However, version II had some issues with smudge conversions and path collisions.
Regarding the smudging, it allowed external filters to run concurrently and the workers
did not use the correct index information when loading the Git attributes for a path to be
smudged. Also, there was no support for long-running filters at that time, so we would
need to deal with this case ourselves when rebasing that version on top of a more recent
Git commit. To handle these conversion issues, we ported some of Jeff’s patches from ver-
sion III, which: separated the attributes lookup and filter application; used the attributes
to classify which regular files are eligible for parallel checkout; and, finally, saved the
already loaded attributes to make them available later for the workers.

Our criterion for parallel-checkout eligibility excluded submodules and regular files
that require external filters (being them long-running filters or one-shot filters). This first
prototype allowed for symbolic links to be checked out in parallel, but we noticed that
this would make it harder to parallelize directory creations in the future, so we latter
disallowed symlinks on the parallel phase (like Duy and Jeff had already done in their
implementations). This change should have a negligible impact on performance as reg-
ular files are usually much more numerous than symlinks. Furthermore, the contents of
symlinks are quite small when compared to the contents of regular files, and they do
not accept conversion filters, therefore it is usually less work to check out a symlink,
anyway.

Also note that, because each submodule is checked out in a separated Git process,
their entries can also be written using the parallel checkout framework. The fact that
the submodule itself is classified as ineligible only means that we do not include it (or
its entries) in the parallel checkout queue of the superproject. Instead, we let the child
process spawned by the checkout machinery decide whether the submodule’s entries will
be written in parallel, using its own parallel checkout queue and resources. It is important
to highlight that, for each submodule, the checkout machinery will wait for the spawned
child process to finish before continuing to the next index entries. Therefore, even though
submodules may use the parallel checkout framework, we do not create more than the
configured number of workers at a time.

Regarding path collision, we took a similar approach to what Jeff had implemented
in version III, detecting the collisions in the workers and skipping the entry so that the
sequential code path could retry writing them later with more context (it would then be
able to properly add the entry to the list of collided paths on clone, overwrite it, etc.). The
collision detection code we implemented would originally inspect the error code from a
failed file creation and consider the following errors as collisions: EEXIST, ENOENT, and
ENOTDIR. This worked for basename collisions but it did not cover all cases of dirname
collisions. Therefore, we ended up improving this system for the final parallel checkout
version. We will discuss more about the improve mechanics at Section 6.2.1.

All of the design decisions mentioned so far made it to the final implementation that
was merged into the upstream Git repository. There was, however, one major change



6.1 | OUR FIRST PROTOTYPE: MULTI-THREADED VERSION

in design from our first prototype to the final version: the use of processes instead of
threads. We initially decided to implement the parallelism using threads because they
come with many benefits for the programmer: the memory is shared!, so communication
and synchronization protocols are much easier to implement and the code is shorter and
easier to maintain; the startup cost is less expensive on Windows (compared to processes);
the memory footprint is smaller; Git’s in-memory caches (like the delta-base cache) are
shared so there is no unnecessary work and memory duplication to load and cache these
entries among multiple workers; etc.

However, threads also come with a high number of challenges, and one of its greatest
benefits, the easy shared memory access, is also a major weakness. Global resources are
visible and modifiable by all threads and, without proper locking and synchronization,
there can be racy usage of the resources leading to errors and unwanted outcomes. In
fact, some of the challenges we described in Chapter 4 arise specifically from the unsafe
use of threads. Nevertheless, we still decided to take a chance with threads because we
now had a tool to overcome the thread-unsafeness of the object reading code, which was
one of the highest barriers to use threads in the previous parallel checkout approaches.
As mentioned in Section 4.1, this is the object reading lock, introduced in the beginning of
2020. The locking mechanics allow concurrent accesses to the object reading routines with
good performance by promoting parallelism in the object decompression phase.

Our first threaded version? seemed to be producing correct results, so we shared it

with Jeff, who had most recently worked in parallelizing checkout. The performance
benchmarks were also showing promising results. Using hyperfine®, a command-line
benchmarking tool with statistical analysis, we varied the parallel checkout parameters
from both our threaded version and approach III to find the best settings for a Linux
clone on Machine Mango. For approach III with async mode these were: 16 processes, 2
writer threads (per process), and 10 slots for preloaded blobs (per process). For approach
IIT with sync mode: 2 processes, 1 writer thread, and 30 slots. For the in-process threaded
prototype, the optimal setting was 10 threads.

Then, using these settings, we ran a benchmark, switching from tag v2.6.15 to v5.6-rc2
in the Linux repo (about 77398 files changed) and also cloning v5.6-rc2. The results are
show in Table 6.1.

Although the initial timings showed 2x to 2.3x speedups, another test showed that up
to 20% of the average thread runtime could be spent in mutex functions, which suggests
locking contention on the object reading code. This is shown at Table 6.2, whose data was
gathered by timing the pthread_mutex_lock() and pthread_mutex_unlock() func-
tions on a full checkout of Linux v5.12. Switching to a multi-process implementation
could probably help with that, as the different processes would be able to read the objects
locklessly, but there would still be some amount of serialization in the kernel — for the
I/O operations — and in the actual drive as well, specially HDDs. Furthermore, the cost of

! Tt is also possible to set up a writable shared memory for multiple processes, but it would not be as straight-
forward as it is for threads. Specially considering the portability challenges.

2 https://github.com/git/git/compare/master...matheustavares:parallel-checkout

* https://github.com/sharkdp/hyperfine
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v2.6.15 to v5.6-rc2 | clone of Linux-v5.6-rc2
Original 7.739 s £0.024 s 7.920s £0.112 s
Approach III (sync) | 5.389 s £ 0.028 s 5.727 s £ 0.036 s
Approach III (async) | 4.022 s £ 0.043 s 3.968 s £ 0.101 s
Threaded prototype | 3.711s £ 0.115 s 3.479s £ 0.044 s

Table 6.1: Run times for two checkouts in the Linux repository using four different checkout versions:
the original upstream code, parallel checkout Approach III, using sync and async modes, and the
threaded prototype version. Each value shows the mean run time and standard deviation for 30 cold-
cache executions on Machine Mango

inter-process communication and in-memory cache duplication could also make the net
effect invisible.

Average thread Average time .
Threads runtime spend on Proportion
lock/unlock
2 5.127 £ 0.133 s | 0.185 £ 0.017 s 3.62%
4 3.568 £0.145s | 0.359 £0.014 s 10.05%
8 3.338 £ 0.061s | 0.627 £0.005 s 18.77%
10 2.884 +0.045s | 0.585£0.011s 20.29%

Table 6.2: Average per-thread runtime and mutex locking time foragit checkout . of Linux v5.12
on Mango (SSD), using the threaded parallel checkout prototype. Values are the confidence interval
from 15 executions with 95% of confidence.

Nevertheless, we still decided to abandon the threaded prototype; not so much for
performance reasons but for correctness and safety. Although the initial tests did not
show any errors, the threaded call chains were quite long and we were not able to
safely attest that all its functions were free from thread-unsafe operations; specially since
they used different subsystems in Git. In fact, we later found out that the streaming
interface may access global resources from the object reading subsystem through low
level functions that do not acquire the object reading lock. Such functions are called
to stream non-delta packed objects whose uncompressed size exceeds the value from
the core.bigFileThreshold setting (which defaults to 512MB). In this scenario, the
threaded parallel checkout would be susceptible to different cases of race condition, some
of which would lead to segmentation faults.

We also found some static function-scope variables in low level routines?, which are
used all throughout the code base (usually on error messages). For the threaded parallel
checkout, a race involving these functions would probably be less problematic than the
object reading race, but it could still cause flaws on Git error messages, for example. We
invested some time trying to make some of these functions thread-safe®, but ended up

* https://lore.kernel.org/git/ CAHd-oW5zh=BG2900Z-M7R26Lgd=RHECMV2+qByF+vU6PmrEn_Q@mail.
gmail.com/t/#u

> https://lore.kernel.org/git/cover.1593115455.git. matheus.bernardino@usp.br/t/#u


https://lore.kernel.org/git/CAHd-oW5zh=BG29O0Z-M7R26Lgd=RHECMV2+qByF+vU6PmrEn_Q@mail.gmail.com/t/#u
https://lore.kernel.org/git/CAHd-oW5zh=BG29O0Z-M7R26Lgd=RHECMV2+qByF+vU6PmrEn_Q@mail.gmail.com/t/#u
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dropping the patches due to some portability issues with their use of the thread-local
storageé.

These are just a few examples of thread-unsafe functions that we found our threaded
checkout prototype was wrongly using. However, even if we fixed them would probably
be insufficient to ensure the thread-safety of parallel checkout under the many different
scenarios it can be used. As two Git contributors commented in 2018, when it was sug-
gested to parallelize other regions of unpack_trees():

“I'm generally terrified of multi-threading anything in the core parts of Git.
There are so many latent bits of non-reentrant or racy code.”
- PEART, 2018

“Multi-threading anything in git is fraught with challenges as much of the
code base is not thread safe”
- KiNg, 2018

That is not to say that process-based parallelism is always a better choice, and it also
comes with its own set of challenges. However, it can be a more viable alternative on
large pre-existing codebases that present many thread-unsafe routines. The decision to
switch to multi-processes did pay off in our case as it made us more confident against race
conditions. Nevertheless, the development of the threaded prototype was not in vain as
the code was reused for the process-based implementation.

6.2 Final Version

To make the change from threads to child processes, we first had to define a protocol
by which the main process would communicate with the workers. We choose to use a
very simple protocol which mixed both Duy’s and Jeft’s designs: The main process starts
the communication by sending the assigned entries to each worker. The data sent for each
entry is composed by two elements: a C struct, containing all the fixed-size fields; and a
flexible-size part containing two strings, the entry’s path and encoding name. These two
parts are allocated together (i.e. contiguously), casted to a binary string, and wrapped in a
pkt-line to be transmitted to the workers. On the other end, the workers can directly cast
the fixed-size portion of the binary string back to the original C struct, and then copy the
two additional strings (whose sizes are specified in the fixed-size portion). After sending
all entries to each worker, the main process sends a pkt-flush message (a special pkt-line
with length zero) to indicate end of input from its side. Then its time for the workers to
process the received entries and send back the results, also terminating with a pkt-flush
message. The results for each entry are packed in another C struct, which includes: the ID
of the entry, a status code and, if the entry was successfully checked out, the stat() data
collected by the worker after writing the entry. To avoid busy-waiting, the main process
receives the data from the workers using pol1(), which waits until any of the open pipes
is ready for reading. Figure 6.1 is a visual representation of how this interactions between
the main process and the workers were implemented.

% https://en.wikipedia.org/wiki/Thread-local_storage
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Figure 6.1: Diagram of the interactions between the main process and the workers during parallel
checkout.

The communication protocol was not the only modification made since our threaded
prototype. Another import decision change was to duplicate some of the code from the
checkout machinery so that we could specialize it for sequential or parallel mode. In the
first prototype, we wanted to avoid duplication as it is usually bad for both readability and
maintainability. We learned, however, that this attempt ended up trading off duplication
for higher code complexity: since we tried to handle both checkout modes in the same
function, we needed more code to check for specific behaviors of each case. For example,
the sequential checkout would only try to create the file when it was about to write it
(i.e. after the blob was already loaded and filtered). This is not a good strategy for parallel
checkout as the worker could end up loading and filtering the blob only to later discover
that the work was wasted because the path already exists in the working tree (and thus
the collided entry should be skipped). It would be more interesting to the worker to try
creating the file first and skip all the work if it already exists. Furthermore, we also needed
to signal the collision to the main process when the parallel mode was active, but handle
the open () error differently on sequential mode. Because of the high code complexity that
came with handling both cases together, we decided to split the two modes and accept
some code duplication in favor of a simpler and easier to read code.

The final version also included improvements and corrections regarding path colli-
sions and the use of stale data from the 1stat() cache. The threaded prototype had
problems in both these areas, incurring in some of the issues we described at Sections
4.2 and 4.3. Although the worker threads did catch basename collisions when failing to
create a file, they did not handle dirname collisions very well. The threads would only
recognise a dirname collision when open() failed with ENOENT or ENOTDIR. This would
correctly cover the cases where a directory was replaced with a regular file or simply
removed, but not the case of a directory beings replaced with a symbolic link. Therefore,
the threads could erroneously follow symlinks when creating the files.

Finally, the threaded version also did not account for the risks of using invalid data
from the 1stat() cache when performing unordered checkouts. In particular, that ver-
sion would incur in this problem when sequentially writing the collided entries after the
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parallel phase. In the two following subsections, we will describe how we handled each
of these issues for the final process-based implementation.

6.2.1 Path Collisions

As we showed in Section 4.2, unhandled path collisions during checkout are really
dangerous as they might lead to errors, data loss, and even security breaches. Therefore,
we took a great deal of care in the final parallel checkout implementation to make sure
that all collision cases would be properly detected and handled. When a parallel-eligible
entry collides with another entry, being it parallel-eligible or not, the assigned worker
detects it, marks the entry with the “PC_ITEM_COLLIDED” code, and skips it. This is all
done as soon as the workers starts processing an entry to make sure that no work is lost
in case the entry is found to collide with another.

The idea behind the collision detection code is quite straightforward. It basically re-
lies on two mechanisms: the creation of files using the “O_EXCL” flag, which acts as a
exclusive-access lock for that path in the file system; and a call to “has_dirs_only_path()”
in the workers, to make sure that the leading components of the entry are all real direc-
tories. This only works because the main process removes the old file from the working
tree (if present) and creates all leading directories of each entry before enqueuing them
for parallel checkout. Furthermore, the workers can only remove (regular) files on a single
scenario: when they encounter an error that prevents an entry from being checked out
after they have already created the file. In this case, the worker removes the file it had
previously created to avoid leaving it empty in the working tree (thus reproducing the
behavior from sequential checkout). Therefore:

« If there is a basename collision (e.g. “file” and “FILE”), only one worker will be
able to create the file with “O_EXCL”, and the others will fail with an EEXIST or
EISDIR error. So we check for this errno values on an open () failure and consider
that a collision. In the rare case that a worker manages to create the file but due
to a checkout error decides to remove it, another worker can still try to check out
another entry that collides with that path. Nevertheless, all entries that should be
retried later will be marked with the collision flag (the one that was removed should
not be retried, as the worker would have already printed a message with the error
it encountered when trying to write it).

« If there is a dirname collision (e.g. “one/file” and “ONE”), there are two possible
outcomes:

1. If “one/file” is handled by the main process before “ONE”, then the directory
“one” is removed to make room for the checkout of the regular file (or symlink)
“ONE”. (It does not matter if “ONE” is parallel-eligible or not.) In this case, the
worker assigned with the “one/file” entry will check if “one” is still a valid
directory and fail, either because it is missing in the working tree (i.e. it was
removed for the checkout of “ONE”), or because it is no longer a directory (i.e.
the file “ONE” was already checked out at that path). In any case, we consider
the directory checking failure a collision.

2. If “one/file” is handled by the main process after “ONE”, then the file “ONE”
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is removed to create the directory “one”. In this case, the worker assigned
with the “ONE” entry will fail to create the file with “O_EXCL”, falling in the
basename collision case described earlier.

The more attentive reader may question what happens in case of submodule collisions,
as the submodule may collide with the dirname of another entry, thus leaving the collided
component as a valid directory (e.g. the submodule “SUB” and the entry “sub/file”). This
is indeed a bit trickier. In this case, parallel checkout will only detect a collision if the
submodule also has an entry named “file” in it, or a pathname that collides with “file”.
Otherwise, “sub/file” will end up written inside the submodule. (Except on clone, where
the submodule is checked out after the superproject.) This is certainly not ideal, but it is
nonetheless how the sequential checkout deals with this case.

Note that sequential and parallel checkout might produce divergent results if the reg-
ular file appears before the submodule in the index (e.g. the file “SUB/file” and the sub-
module “sub”). That is because sequential checkout will process the file first and parallel
checkout will process the submodule first, as it is not parallel-eligible. This is unfortunate,
but it is not an error as Git does not make any guarantees about which file will be present
after checkout in case of collisions. Furthermore, this is already a quite specific corner
case, where the working tree is likely to be unusable (or at least partially broken) for
users on file systems that produce such collisions. Therefore, it would not be worth the
effort to unify the two modes regarding this specific outcome.

After all parallel-eligible entries are processed and the workers finish their execution,
the main process loops through the entries marked with PC_ITEM_COLLIDED and retries
to check them out. This will essentially emulate the behavior that the classic sequential
checkout implements upon path collisions, writing each one of the colliding entries on
forced checkouts (although only one will actually survive on disk), or erroring out with
a message on non-forced checkouts. The sequential checkout does not have any special
code to handle path collisions among checkout entries (besides the reporting message on
clone), so it applies the same logic used for paths that were already in the working tree
before checkout (1stat () the path, check ifitis clean, remove it if doing a forced checkout
or abort otherwise). However, the parallel checkout can distinguish path collisions from
this other case, so in theory, we could adopt a different behavior (e.g. just ignore the
colliding entries). We ended up choosing to retry checking them out for a few different
reasons:

« It is the same behavior implemented by the sequential checkout, so we avoid hav-
ing dissonant outcomes that may surprise users in some way. Note, however, that
there is still a slight difference regarding which colliding file will survive at the end
of checkout. For sequential checkout, it is always the last one, while for parallel
checkout, this is not deterministic.

« It allows us to use already implemented code to report the collisions during clone.
(Remember that the sequential checkout only reports them on clone because that
is the only scenario when the working tree is known to be empty before checkout.
On parallel checkout, we could report collisions in any operation, but we did not
do so to avoid the difference in behavior.)
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« There can actually be a performance benefit for future Git operations if we write
all colliding entries during checkout. Although only one entry will survive in the
end, writing all of them allows the checkout code to lstat () the files and save the
metadata in the index. Without this, we would have NULL 1stat() fields for all
entries except one in the colliding group, and future operations that need to refresh
the index would have to read the working tree file to make sure that these entries
are dirty, as it would not be possible to do so using the 1stat () fields. This means
that for a colliding group of N entries, every subsequent git status would have
to read, filter, and hash the written file N — 1 times, to compare it with the hash
of each entry in the group and discover that they are dirty. By writing all of them
during checkout, like the sequential code does, we can pay this overhead only once
and save time in future commands. Although a working tree with many colliding
entries is probably not very useful in the first place, so the user will probably resolve
the collisions or maybe use a sparse checkout to fix the performance problem we
described here.

Of course, even though the first two items are more important, none of the three are
permanent, and both the parallel and sequential checkout can be changed, in the future,
to ignore colliding entries or even report them at any checkout operation. Nevertheless,
these were the reasons why we choose to adopt the behavior we implemented for now,
and we considered it to be a stable option for the first parallel checkout patches. Specially
because it tries to approximate the parallel version to the classic sequential version, so it
is less likely that users will find problems with it. Furthermore, reusing the code makes
the implementation easier and less likely to contain new bugs. However, as we already
mentioned, the behavior can be easily changed in the future if necessary, as the collision
detection code is decoupled from the collision resolving code.

6.2.2 Avoiding Misuse of the lstat() Cache

In the previous section we discussed how parallel checkout detects path collisions
when concurrently writing entries in the working tree, to avoid errors and security is-
sues. However, we have not yet addressed how we avoid using possibly stale data from
the 1stat() cache in case of such collisions. Since we use the cache to check whether
the leading components of the to-be-written entries are all valid directories, a collision
that replaces the directory with another file type, could lead to the same security issues
mentioned earlier.

As we have discussed in Section 4.3, following the index order during checkout does
not prevent the cache from becoming stale, but it does prevent the stale data from ever
being used in checkout. This happens because, once the code leaves a directory, it never
goes back to it to write more entries, and the cache can only become stale after leaving a
directory to write an entry at a higher path level (which can collide with the said directory
or one of its parents). On parallel checkout, however, we cannot guarantee this order, so
we had to study other alternatives to protect the code from a cache misuse. In this process,
we found out that even the classic sequential checkout already had some cases where it
did not follow the index order and, thus, could end up using stale data from the cache.
Namely, these were the git checkout-index command, and the code path for delayed
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checkout, a feature used by some long-running smudge filters (see Section 4.4). As we later
discovered, these two code paths were in fact vulnerable to the security issues described
in Sections 4.2 and 4.3. Delayed checkout was more critical as it could be exploited during
clone to drive remote code execution (RCE) attacks via a maliciously crafted repository
(i.e. by tricking Git to write a malicious script in the “hooks” directory, so that it gets
executed after checkout). We discuss more about this vulnerability and how we worked
with the community to fix it in Appendix D.

As for parallel checkout itself, our study showed us that the workers were not vul-
nerable to this bug, and also could not use any outdated cache info. The workers start
with a clean instance of the 1stat() cache, and from the time they start running until
they finish processing the assigned entries, neither them nor the main process removes
any directories. These two invariants are enough to ensure no worker will use outdated
information from the cache and end up creating files at wrong places, since the cached
directories will be valid throughout the whole parallel execution. However, the main pro-
cess was vulnerable in two situations:

« Falling back to sequential mode: after “pre-processing” all entries to be checked
out and building the parallel checkout queue, is time to check whether the number
of enqueued entries surpasses the configured threshold for parallelism, and start
the workers if so. Otherwise, the entries are written sequentially by the main
process itself. In the second case, the 1stat() cache may already contain invalid
data (because directories might have been removed during the “pre-processing”
phase), and although the queue follows the index order, it likely will not start
from where the “pre-processing” phase left off. So the invalid cached data may be
erroneously used at this point.

Here is an example: say we have the entries A/a, A/b, A/c, and the symlink a in
the index. Now suppose the first two entries are not eligible for parallel checkout
because they require external filtering. The pre-processing phase will then check
out A/a, A/b, and the symlink a (which is also not parallel-eligible), leaving A/c in
the parallel checkout queue. Now we proceed to the parallel phase. At this point,
the lstat () cache of the main process considers A as a directory, but the path was
in fact replaced by a symlink in the working tree. The checkout queue is to small
to distribute among multiple workers (it has only one entry), so the main process
decides to sequentially write the queue itself. Now it will check out A/c following
the symlink a, while thinking it is a real directory.

« The handling of collided entries after parallel checkout: this is more or less
similar to the first case, but this time we actually start the workers and run into the
cache vulnerability after they finish. If the workers find a path collision, they mark
that entry to be checked out later by the main process and, when that time comes,
the lstat() cache of the main process may have already outdated information
from the pre-processing phase, leading to the bug.

We can use the same example from the previous item to illustrate this one, but
we need to add one more parallel-eligible entry (A/d) and set the threshold for
parallelism to 2. Now, the parallel checkout queue will contain tow entries (A/c
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and A/d), so the checkout machinery will try to check them out using two child
processes. However, the workers will find that A is not a directory and deduce
that a path collision must have happened, so they will mark the entries with
PC_ITEM_COLLIDED and let the main process handle them later. When that hap-
pens, the main process will retry writing the two entries, but its own lstat()
cache will be outdated. So it will follow the symlink a and end up writing the two
files at the wrong place.

These two vulnerable spots in the parallel checkout framework would in fact be solved
once we had the fix for the more general bug, which was that the 1stat() cache could
become stale when there are path collisions. By protecting the cache from ever getting
into this state, we would no longer need to worry about unordered checkout cases, which
includes parallel checkout. A complete discussion about the patches that fixed this vulner-
ability, as well as the development process, can be found in Appendix D. To summarize it,
we decided to manually reset the whole 1stat () cache whenever the Git process removes
any directory (through the rmdir () call) and also when a child process finishes. It is easy
to see how these mechanics can indeed fix the two examples given above, by not allowing
the lstat() cache to become stale in the first place.

6.2.3 A General Overview of the Final Code

To put all the pieces together, we will here show a brief overview of the step-by-step
code path taken by parallel checkout. Using a top-bottom approach, we will start from the
parallel checkout API, which was developed at the same level of checkout_entry (), to
support the largest number of users of the checkout machinery. The API designed is easy
to integrate for current sequential users of checkout_entry(), requiring a minimum
amount of changes. The Patch 6.1 shows an example of how these changes should look
like for a generic checkout_entry () user.

Note that checkout_entry() transparently decides whether the entry is parallel-
eligible or not and properly enqueues it for the later run_parallel_checkout() call
when appropriated. To do that, the function received a small modification, represented
in italic in the simplified workflow below (adapted from GiT DEVELOPMENT COMMUNITY,
2021b):

1. Check whether there is any untracked or unclean file in the working tree which
would be overwritten by this entry, and decide whether to proceed (removing the
file(s)) or not;

2. Create the leading directories;
3. Load the conversion attributes for the entry’s path;

4. Check, based on the entry’s type and conversion attributes, whether it is parallel-
eligible. If so, enqueue the entry and the loaded attributes for parallel checkout. If
not, write the entry right away, using the default sequential code.

The function was also changed to optionally receive the conversion attributes, instead
of having to load them itself. This is used by the main process both when retrying to
check out entries that the workers could not write due to path collisions and also when
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Program 6.1 Example of a patch adding parallel checkout support to an existing check-
out_entry () user. Adapted from GiT DEVELOPMENT COMMUNITY, 2021b.

1 diff

2 @@ -1,6 +1,20 @@

3

4

5 +int pc_workers, pc_threshold, err = 0;

6 +struct checkout state;

7+

8 +get_parallel_checkout_configs (&pc_workers, &pc_threshold);
9 +

10 +/*

11 + x This check is not strictly required, but it
12 + *x should save some time in sequential mode.

13 + %/

14 +if (pc_workers > 1)

15 + init_parallel_checkout();

16 iz

17 for (each cache_entry ce to-be-updated)

18 err |= checkout_entry(ce, &state, NULL, NULL);
19

20  +err |= run_parallel_checkout(&state, pc_workers, pc_threshold, NULL, NULL);
21 i

22

the checkout machinery falls back to sequential mode after enqueuing entries for parallel
checkout (more on that later).

After the checkout_entry () loop, run_parallel_checkout () spawns the workers
and distributes the entries among them if the size of the queue is above a set thresh-
old. Otherwise it just writes the entries sequentially. This is because, for a few entries,
the parallelization gains may not outrun the cost of process spawning and communica-
tion. (By default the threshold is 100 entries, but this value can be configured through
the checkout.thresholdForParallelism setting.) The entries are distributed in con-
tiguous chunks to minimize the chance of having more than one worker simultaneously
writing entries at the same directory, which could incur in lock contention in the kernel.
We also experimented with other forms of work distribution like work stealing, but we
did not observe any significant performance changes when using it.

For each entry, the workers perform the following steps (adapted from GiT DEVELOP-
MENT COMMUNITY, 2021b):

1. Checks if there is any non-directory file in the leading part of the entry’s path or
if there already exists a file at the entry’s basename. If so, mark the entry with
PC_ITEM_COLLIDED and skip it;

2. Creates the file (with O_CREAT and O_EXCL);
3. Loads the blob into memory (inflating and delta reconstructing it);

4. Applies any required in-process filter, like end-of-line conversion and re-encoding;
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5. Writes the result to the file descriptor opened at Step 2;

6. Calls fstat() or lstat() on the just-written path, and sends the result back to the
main process, together with the end status of the operation and the item’s identifi-
cation number.

Steps 2 to 5 are very similar to the ones taken by the sequential checkout path, but as
previously mentioned, they use a different function to accommodate the specificities of
parallel checkout. Furthermore, when possible, these steps are combined by the streaming
machinery to avoid loading the whole blob into memory all at once, just like sequential
checkout does.

As mentioned earlier, if the worker encounters an error, it is allowed to remove the
file it has already created to avoid leaving it empty in the working tree. This is the only
time a worker can remove any file, and this is paramount to avoid race conditions and
also to ensure our collision detection mechanics work correctly.

After the last worker finishes its assigned entries, the main process (still at
run_parallel_checkout()) inspects the exiting codes and proceeds to handling
the results, in two steps (once more, adapted from GiT DEVELOPMENT COMMUNITY,
2021b):

1. First, it updates the in-memory index with the l1stat() information sent by the
workers. (This task must be done first as this information might me required in the
following step.)

2. Then it writes the items which collided on disk, ie. items marked with
PC_ITEM_COLLIDED. (This time, checkout_entry() does not need to reload
the conversion attributes as we already have them in the parallel checkout queue.)

6.3 Correctness and Regression Tests

The Git repository includes its own shell-based testing framework and a test suite
containing about 932 test files with a total of 13892 individual test blocks as 0f v2.32.0 (note
that this includes setup blocks, which are not properly tests). Developers are encouraged
to write new tests whenever they add new functionality or fix bugs, both to check that the
modified code behaves as expected and to serve as a regression-detecting mechanism for
future changes. The test suite contains mostly functional tests for the different commands,
options, and configurations, but there are also white-box tests of Git’s internals and on-
disk data structures. It also includes a few C helpers that are compiled against the Git
code base both to perform some unit tests and to help on test setup.

The parallel checkout feature promoted many changes to the checkout machinery,
which affects many commands. Such changes obviously could not be submitted without
a good testing coverage. To do that, we ported the tests written by Jeff Hostetler in his
parallel checkout implementation, and contributed with some additional tests for colli-
sion detection, checkout of submodules, forced checkouts, symlink detection on leading
directories, and parallel checkout support on other commands. The parallel checkout tests
are divided in three files, each focusing on a different aspect of the feature:
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. t2080-parallel-checkout-basics.sh’: Basic tests to ensure parallel checkout pro-
duces the same result as the classic sequential mode. These tests run git clone and
git checkout with the sequential mode, parallel mode, and fallback-to-sequential
mode, which happens when parallel checkout is enabled but the number of entries
is below the configured threshold for parallelism. Then it checks the output of git
status and the difference between the tree blobs and the index to make sure that
both the index and the working tree were constructed correctly. After all modes
have been executed, we also directly compare the working trees. The checkout op-
eration chosen for this test is interesting because it contains many file type changes
(e.g. from the symlink “d” to the file “d/d”), content changes for each type of entry
(regular file, symlink, and submodule), new files, and finally, removed files. So we
get to see how checkout behaves on many scenarios. This test file also contains test
cases for symlink detection on leading dirs, and the --force option.

. t2081-parallel-checkout-collisions.sh®: This file includes tests to check that the
workers can correctly detect collisions both at the basename and at the dirname of
to-be-written entries. We also explicitly test that the workers do not follow symlinks
when they collide with the dirname of an entry and that the collisions are properly
reported on clone (like the sequential checkout does).

. t2082-parallel-checkout-attributes.sh’: This file exercises parallel checkout in
cases where different smudging filters are required. The goal is to make sure that
all conversion attributes are correctly passed from the main process to the workers,
and that they have all that is needed to convert the entries by themselves. We also
check that entries requiring external filters (thus ineligible for parallel checkout)
are properly written at the same operation that writes parallel-eligible entries. This
includes a test for the interoperability of parallel checkout with delayed checkout.

In addition to the tests specifically targeting parallel checkout, we also modified one
of the automatic test rounds that the Git project runs at the GitHub Actions infrastructure
to execute all tests with parallel checkout enabled. Not all tests will actually use parallel
workers in this test round — since they must check out at least two files (in the same
operation) to allow for any parallelism — but this approach is still interesting as we can
at least test the fallback-to-sequential mechanics on different commands.

6.4 Main Contributions

Parallel checkout was truly a collaborative endeavour, with the participation of dif-
ferent developers throughout a large time span. Without the different contributions, the
feature would not have achieved the level of maturity it has now. In this section, we are
going to highlight the key aspects originated from each of the parallel checkout implemen-
tation of 2016 and 2020 that were incorporated into the final version merged upstream.
In this process, we are also going to enumerate the main new contributions from this

7 https://github.com/git/git/blob/v2.32.0/t/t2080-parallel-checkout-basics.sh
8 https://github.com/git/git/blob/v2.32.0/t/t2081-parallel-checkout-collisions.sh
? https://github.com/git/git/blob/v2.32.0/t/t2082-parallel-checkout-attributes.sh
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particular work.

Table 6.3 shows some of the main general differences from each parallel checkout ap-
proach, including design choices, features (marked with “v”), and possible issues (marked
with “X).

The general structure for the parallel checkout framework merged upstream comes
from the approach of 2016. This includes elements such as: the general API, the way to
handle the progress meter, the pol1() loop (to avoid busy-waiting), and the entry en-
queuing strategy. The structure from the 2016 parallel framework supports all checkout
commands, can use the streaming interface, and parallelizes both I/O and CPU (object
decompression), which makes it interesting for both NFS and local SSDs. As mentioned
earlier, it also provides a good trade-off between code complexity and flexibility/robust-
ness.

To handle the attributes loading and filtering issues enumerated at Section 4.4, we
resorted to the mechanics implemented in the approach of 2020. This includes the clas-
sification of entries that require external filters as ineligible for parallel checkout (to
avoid breaking non-concurrency assumptions), and the changes to preload the entries’
attributes and send them to the workers. This is important because only the workers
do not have access to the in-memory index of the main process, which may be required
when loading the attributes. From the 2020 version we also incorporated parts of the inter-
process communication protocol (with some simplifications, such as removing the initial
handshake), the suite of parallel checkout tests, an adjustment to the path collision report
on clone to make it work with parallel checkout, and parts of the design document.

As for this work, our main contributions to the parallel checkout implementation
were:

+ The analysis of the previous parallel approaches, applying the best features of each
one for the final version. The goal was to achieve a fast and robust implementation
with as little patch complexity as possible.

« The study of the 1stat () cache and its possible misuses during unordered checkout.
This analysis not only ensured that parallel checkout would be protected against
stale uses of the cache, which could result in serious security risks, but also allowed
us to find and fix a remote code execution vulnerability which was already in the
code (more about it at the Appendix D).

+ The expansion of the parallel checkout tests. The added tests include checks for
collision detection, checkout of submodules, forced checkouts, symlink detection
on leading directories, and parallel checkout support on other commands. We also
employed a continuous integration rule to execute a full round of the Git test suite
with parallel checkout enabled, to potentially catch any odd interactions that the
specifically design tests might have missed.

« The capability to safely write in parallel on a non-empty working tree. Paralleliz-
ing writes is very important for NFS, where that was the main checkout bottleneck.
The previous approaches were all able to write in parallel, but with either secu-
rity or usability limitations. The implementations from 2008 and 2016 could not
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2008

2016

2020

2022

Parallelism
Technique

Threads

Processes

Processes
& threads

Processes

Focus of
parallelism

Writing

Reading,
writing
and

decompression.

Reading and
decompression.

*Also writing,
on clone.

Reading,
writing

and
decompression.

Patchset
complexity

2 patches
165 added lines

12 patches
730 added lines

37 patches
4840 added lines

22 patches
2058 added lines

Support all
checkout cmds

v’

v’

Uses streaming
interface

N.A. (no streaming

interface)

v’

v’

final stat()
in parallel

v’

Adds
tests

Work
Redistribution

May load
attributes
using wrong
index

Path collision
detection not
fully adapted
for parallelism

(Only if async
mode is used

on non-empty
working trees)

Race conditions
on file creations
and removals

Race conditions
on attributes
reading and

filtering

Concurrency
on external
filters

X

Table 6.3: General design and feature differences from each parallel checkout approach.
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reliably detect collisions among two entries being checked out in parallel. And the
approach from 2020 could only write in parallel when running under the async
mode, which requires a clean working tree before checkout and, thus, can only be
used by git clone. (Otherwise, the code could miss collisions between an entry
being checked out and an untracked symlink in the working tree.) We proposed a
mechanism which allows us to obtain the performance benefits from parallel writes
on all checkout cases, without missing any type of path collision among regular files
and symlinks.

« The performance and memory benchmarks conducted (more about them at the fol-
lowing chapter), which allowed us to understand in which types of storage parallel
checkout is most effective in order to properly advise Git users and choose the
default configurations.



Chapter 7

Results

In this last chapter, we will present the results from our performance and memory
benchmarks on the parallel checkout feature, which was submitted and merged into the
upstream Git project. We will also discuss its current limitations and what we consider to
be some possibilities for future improvements, wrapping up with a conclusion about the
main contributions of this work.

7.1 Performance Benchmarks

To test the parallel checkout performance, we benchmarked the same operation we
used for profiling: a checkout execution on an empty working tree of the Linux kernel
repository, which requires the creation of over 70 thousand files. This is an operation that
represents well what we were seeking to optimize with parallel checkout, which is the
file creation process. Nevertheless, for those interested in seeing how parallel checkout
performs with other checkout operations that require more non-parallelized work, such
as index manipulations and file removals, please refer to Appendix E.

Once again we repeated the test on a shallow clone of the Linux repository containing
only loose objects; but remember that these tests are mostly for research purposes, as no
repository should have these many loose objects in natural use cases. All benchmarks
show mean runtime of 15 executions and the limits for a confidence interval of 95%. The
chosen sample size of 15 executions produced, in these performance benchmarks, a rea-
sonable trade off between a sufficiently small error margin and a shorter time to run all
the experiments.

7.1.1 SSD

Figures 7.1, 7.2 and 7.3 show the results on SSD. The speedups range from 2x to 3.6x on
the packed objects case, and 2.3x to 7.2x on the loose objects case. On all three machines?,
we got the best overall results at around 16 to 32 workers for the packed objects, and 64
workers for the loose objects. But notice that we start seeing diminishing returns around

! Refer to Appendix C for the specifications of the machines used to ran the tests.
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Figure 7.1: Checkout benchmark on machine Mango - SSD

Machine Grenoble - SSD (linux repo)
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Figure 7.2: Checkout benchmark on machine Grenoble - SSD
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Machine Songbird - SSD (linux repo)
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Figure 7.3: Checkout benchmark on machine Songbird - SSD

8 workers. Thus, values higher than that may not be worth the additional usage of system
resources (like RAM and I/O bandwidth).

The speedup in the packed object case was already expected as the CPU-bound (and
well parallelizable) inflation operation dominated the run time for the sequential checkout.
But it is interesting to see the even greater speedups in the loose object case, where object
reading was the most time consuming task. Using iostat? we could see that the percentage
of read request that get merged together during the loose objects checkout goes from 7.9%
with one worker to 10.4% with 64 workers on Mango. Since this is only a small increase,
the speedup likely comes, in its majority, from the efficiently internal parallelization on
the SSD (and perhaps a better usage of the I/O bandwidth as well).

7.1.2 HDD

The HDD results are shown in Figures 7.4, 7.5 and 7.6. As seen on these results, par-
allel checkout was not very effective on the HDDs. All three machines achieved some
improvement in the packed objects case, but the overall speedup was too small. The only
exception is Wall-e (Figure 7.4a), where we did see an interesting 2.1x speed boost. Fur-
thermore, there seems to be some variation regarding the optimal number of workers for
the packed objects case in each machine. Some values even produce performance degrada-
tions. As for the loose objects case (Figures 7.4b, 7.5b, and 7.6b), parallel checkout was in
fact significantly slower than the sequential version on all three machines. (But remember
that this is an artificial case, that should not happen much in practice.)

The time reductions on the packed objects case likely come from a combination of two
factors: the overlapping of I/O and computation, and the deeper I/O queue depth together
with a favorable pattern for optimization by the scheduler (i.e. request reordering and/or

2 https://man7.org/linux/man-pages/man1/iostat.1.html
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Figure 7.4: Checkout benchmark on machine Wall-e - HDD
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Figure 7.5: Checkout benchmark on machine Grenoble - HDD.
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Machine Cicada - HDD (linux repo)

(a) Packed Objects (b) Loose Objects
79.5 2501 237.6

232.9

200+

55.9 56.3
150+

100+

50+

0 d
workers

4 8 16 32 64 4 8 16 32 64

Figure 7.6: Checkout benchmark on machine Cicada - HDD.

merging). Thus, the HDD can probably serve the requests in a way that lowers the disk
seeking time.

The odd case among the packed objects plots is machine Wall-e (Figure 7.4a). On
this machine, we keep seeing speedups as we increase the number of workers, and the
improvements are significantly better than the other two machines. To inspect that, we
used the filefra g3 tool, which showed that the 3.2 GiB packfile from our tests was han-
dled differently by the file system of each machine: on Cicada, the file was fragmented
into 4 extents*; on Grenoble, 23 extents; and on Wall-e, 245 extents. Probably Wall-e’s
HDD was more occupied, so the system could not find large contiguous chunks, forcing
it to further fragment the file.

Reading a fragmented file is bad for performance as it requires more seeking on disk
and read ahead is less effective. However, the increased I/O queue depth, leading to higher
optimizations opportunities for the scheduler, likely compensated for the performance
issues of fragmentation and reduced the disk seeking time. That is our hypothesis as to
why parallelization was so effective in this particular case, producing the larger speedups
from Figure 7.4a. Conversely, the less fragmented files from Cicada and Grenoble could
benefit more from read ahead mechanics (as more blocks are packed together on disk). So
sequential checkout was already faster in comparison to Wall-e, and the reordering and
merging of the concurrently-issued read requests was likely less efficient. That is, newly
requested bytes could have already been loaded into memory on a previous request thanks
to read ahead.

As for the loose objects benchmarks, the observed behavior is a bit harder to under-
stand. This time, any gains from overlapping I/O and computation are likely outweighed
by a performance degradation from the parallel reads. It is quite possible that the reading

* https://man7.org/linux/man-pages/man8/filefrag.8.html

4 Each extent is a contiguous range of data blocks.
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patterns produced by the parallel workers did not provide good opportunities for the I/O
scheduler, even with a deeper queue depth. One of the hypothesis we considered is that
the loose files could be too scattered over the disk, making it harder for the scheduler to
perform effective merges on the incoming read requests (specially since the queue of out-
standing requests has a limited size). As we mentioned before, files with some amount of
fragmentation, like Wall-e’s packfile, may actually be good candidates for parallel reading,
but this effect likely does not scale indefinitely as the number of fragments grow. And if
the dispersion of the loose files are way too big, it would not be surprising if it produced
the opposite results on parallel performance.

Using the filefrag tool once again, we collected the physical offsets for each loose
object file on machine Cicada’s HDD. The aggregated data for the ~76K files — each com-
posed by a single extend — were split in 15547 discontinuous chunks of blocks. (Where
each block corresponds to 4KiB.) This large number of chunks could make it rarer to find
multiple outstanding I/O requests that are close together and, thus, candidates for merg-
ing. Furthermore, we measured how the parallel workers change the percentage of read
request getting merge during checkout, showing that the parallelism was indeed much
more effective in increasing this measurement in the packed case than in the loose case.
These results can be seen at Figure 7.7.

Percentage of read requests merged during checkout
Machine Cicada - HDD (Linux repo)
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Figure 7.7: Percentage of read requests merged together before being sent to the device during check-
out on Machine Cicada (HDD). Plotted values are the average of 15 samples.

Finally, it is worth mentioning that, without enough optimization opportunities for
the I/O scheduler, the effect of parallelism on the HDD could lead to performance degra-
dation due to the dispute over critical resources and locking contention on the concurrent
reads.
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Figure 7.8: Checkout benchmark on NFS - AWS EBS gp3 (SSD)
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Figure 7.9: Checkout benchmark on NFS Cicada - HDD
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Figure 7.10: Checkout benchmark on NFS Cicada - SSD
7.1.3 NFS

Figures 7.8, 7.9, and 7.10 show the results on NFS. On the “NFS Cicada” setup (Figures
7.9 and 7.10), the checkout benchmark with the Linux repository was taking too much
time to run: almost an hour for a single execution of the sequential checkout on the SSD
and over two hours on the HDD (that is, both over NFS). So we decided to use the Git
repository instead. This repo contains about 4 thousand files at tag v2.32.0. The packed
and loose repository versions were created exactly like the Linux ones. The first ended
up with around 310 thousand objects, totaling 172 MiB (of both size and disk space); and
the second ended up with around 4 thousand objects, totaling 14 MiB of size (or 26 MiB
of disk space).

We obviously cannot compare the times from Figures 7.8 and 7.9 as they are using
different repositories, hardware, configurations, and etc. But we wanted to see what dif-
ference an SSD makes on a parallel checkout over NFS, so we repeated the tests on “NFS
Cicada” using its “caching SSD* a small 20 GiB SSD meant for caching and accelerating
the Windows boot. Beware that this device is not designed for general storage®.

The best results on NFS were at around 32 to 64 workers. However, we start to get
diminishing returns from 8 workers, so this seems to be a good value for NFS mounts as
it can achieve good performance without overusing the system’s resources. As discussed
in Chapter 3, two functions dominate the execution time of our checkout operation on
NEFS: open (), with 44% of the total runtime, and fstat(), with 33~40%. Both these func-
tions spend most of their time off-CPU on network request/response operations and other
I/O waiting time. The parallel checkout implementation amortizes the network latency
associated with these expensive calls and allows more parallel work on the server.

We also ran the benchmark on a simulated single-core setup for both the NFS server

> For completeness, we also benchmarked parallel checkout locally on the caching SSD, using it as a general
storage device. The results are show at Section E.3.
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and client, to see how the parallelism would affect performance when we do not have mul-
tiple cores available. This was performed using the Linux CPU Hotplug feature (Linux
DEVELOPMENT COMMUNITY, 2021), which allows us to disable some CPU cores by writ-
ing “0” to the special files /sys/devices/system/cpu/cpu<number>/online. For this
benchmark, we disabled all cores but one (core 0), on both the NFS server and client of
the NES Cicada setup. Results are shown at Figures 7.11 and 7.12. Once more, these are
average run times and confidence intervals from 15 samples with a confidence level of
95%. The results were very similar to the ones from the multi-core setup, with the opti-
mal configuration around 8 to 16 workers. This suggests that the performance gains we
get from the parallelism on NFS are also applicable for single-core machines.

NFS from HDD - Cicada - One Core (git repo)

(a) Packed Objects

(b) Loose Objects
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Figure 7.11: Checkout benchmark on NFS Cicada - HDD, with a single-core setup on server and
client.

7.1.4 Windows

It would be impracticable to repeat our performance tests in every system and ma-
chine architecture where Git is used. However, we still wanted to see how parallel check-
out behaves on a different operating system, so we ran the local benchmarks on Microsoft
Windows as well. It has a large user base and an active development community on Git.
Besides, it is not a UNIX-like system (differently then macOS, BSD, and Linux), so it is a
good choice to complement the benchmarks we already have on Linux. We ran these tests
using the Git for Windows SDK®, which comes with the mintty terminal emulator and
the git-bash shell. Since the Git for Windows SDKisa subset of MSYS2, it was possible
to use the benchmark scripts we already had for Linux, with a few adjustments.

There are a couple caveats for checking out the Linux repository on Windows,
though. First, the v5.12 tree contains some paths that only differ in case, such as

® https://github.com/git-for-windows/git/wiki/Technical-overview

7 https://www.msys2.org/
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NFS from SSD - Cicada - One Core (git repo)
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Figure 7.12: Checkout benchmark on NFS Cicada - SSD, with a single-core setup on server and client.

“net/netfilter/xt_DSCP.c” and “net/netfilter/xt_dscp.c”. These paths collide
during checkout on Windows, but they will not prevent the operation from completing
successfully. Therefore, even thought a subsequent git status execution will show these
files as dirty, there is really no impact in our benchmark. A more delicate case is caused
by paths that use reserved named on Windows, such as “aux”. The Linux v5.12 tree has
three of such paths and, unlike case collisions, the reserved names would cause an error
during checkout making the operation end unsuccessfully. To overcome this problem,
we renamed the “aux” files, prepending them with a “_” character, so that they could be
properly checked out on Windows.

Figure 7.13 shows the benchmark results on SSD (Machine Mango, Windows 10 parti-
tion), and Figure 7.14 shows the same benchmarks on HDD (Machine Cicada, Windows 10
partition). Both plots show the confidence interval of 15 samples (95% confidence level).
Unfortunately, the HDD benchmark produced too much variance, even though Cicada
was running a fresh Windows installation, without any additional apps. So we decided
to try again with the Git repository (the upstream version, not Git-for-Windows). The
packed and loose repositories were prepared just like it was described on Section 7.1, for
the NFS Cicada tests. The results using the Git repository are shown at Figure 7.15.

Looking at Figure 7.13, we can see that the behavior of parallel checkout on Windows
was similar to what we observed on Linux for the Mango machine (SSD). Although the
speedup factor was a little smaller on Windows — with 2.22x on the packed objects case,
and 3.75x on the loose objects case — the optimal number of workers remained the same,
at around 8 to 16.

We start to see higher differences on machine Cicada (HDD). For the packed objects
case, parallel checkout was marginally better than the sequential mode when checking
out the Linux repository (Figure 7.14a). This is consistent to what we saw on the Linux
system at the same machine. When checking out the Git repository, however, parallelism
increased the run time for the packed objects case (Figure 7.15a). It is difficult to pinpoint
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Figure 7.13: Checkout benchmark on machine Mango - SSD, on Windows.

Machine Cicada - HDD - Windows 10 (linux repo)
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Figure 7.14: Checkout benchmark on machine Cicada - HDD, on Windows.
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Figure 7.15: Checkout benchmark on machine Cicada - HDD, on Windows.

the reason behind this difference, but it might be related to the size and/or fragmentation
of the packfiles. The Linux repository has a packfile of about 3.2 GiB, while Git’s packfile
is only 5% of that size. So there might not be enough workload to efficiently read the
objects from it in parallel.

Regarding the loose objects case on the HDD, we see time reductions in both repos-
itories (Figures 7.14b and 7.15b), with a 1.65x speedup on the Linux repo (although the
variance was quite high), and 2.17x on the Git repo. These results are very different to
the ones we got on the Linux system, where parallel checkout generally slowed down
the loose objects checkout. One hypothesis for this discrepancy is that NTFS, the file
system we used on Windows, could be storing the loose object files more closely together
than ext4; which, in turn, would result in higher merging opportunities for the I/O sched-
uler.

7.2 Memory Benckmarks

Memory usage is an important factor to keep track when dealing with parallelism. A
high memory usage can lead to performance degradation not only for the parallel program
itself, but also for other processes running on the user’s machine, so it is not something
to take lightly. Furthermore, our implementation uses multiple processes with their own
memory spaces (because we call exec() after fork(), replacing the children images).
So, unlike threads or forked process with Copy-on-Write mechanics — i.e. without a sub-
sequent exec () call — our workers do not share the heap, BSS, and other segments of
memory (although they can share mmap () -ed file regions, as we will discuss later).

There are many ways to monitor memory usage, and just like profiling, it is important
to understand what each tool really measures to decide which is most appropriate for each
case. During parallel checkout, many files (or file regions) get mapped into memory to
read the objects, and we want to measure the memory used by these too. So, as powerful
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as a tool like massi f is, it would not be suitable for our needs: By default, massif measures
the heap memory allocated with malloc(), realloc() and similar functions. It can also
optionally include the stack memory. However, it does not include pages mapped with
mmap (), nor the size of the code, data, and BSS sections. These can be profiled with the
--pages-as-heap option, but then we would be measuring the virtual memory, not what
is actually on RAM. The distinction here is important because, not all the pages mmap () -
ed during checkout necessarily get into the physical memory, as they are lazily loaded
by the kernel when (and if) needed. The mapped windows from packfiles may in fact
contain many objects that are not needed, and thus, the pages are not even read from
disk. So, ideally, we would want to measure only the physical memory usage.

On the other hand, the RSS (Resident Set Size) measurement, which focus on physi-
cal memory, may also be misleading for our analysis as it includes shared memory (e.g.
shared/dynamic libraries), which is not exclusively owned by a single process. Further-
more, since we are running multiple checkout worker processes, these values would be
counted more than once. Instead, to understand how much memory parallel checkout
uses, we decided to monitor the PSS (Proportional Set Size) of the Git processes over time.
The PSS concept, proposed by Matt Mackall (CorBET, 2022), is an interesting way to un-
derstand how much physical memory a process is really using on Linux, as it attempts to
better distribute the usage of shared memory. PSS is calculated by summing two values:
the unshared memory of a process and its proportion of shared memory, obtained from
the division of the total shared memory by the number of processes using it. To give an
example, if a process is using 100 MiB of unshared memory and also sharing 100 MiB with
three other process, its PSS is 125 MiB.

The PSS value of a process at a given time can be retrieved thought the procfs interface.
More specifically, the /proc/<PID>/smaps file. We wrote a small memory profiler that
stops® the git checkout . process and its children at a given frequency, inspects the
relevant smaps files, and prints out the sum of their PSS together with a timestamp. We ran
Git checkout through our profiler with different numbers of workers, and repeated each
experiment 15 times to produce an interval of confidence for the average PSS usage over
time. We collected approximately 40 samples per second. However, because there was
some variance on the total number of samples and sampling rate over the 15 repetitions,
we (linearly) interpolated the 2D points from each of them and re-sampled the resulting
curves at fixed time intervals. With this processed data, we took the average PSS at each
new X point and plotted the results together with the confidence interval, for a confidence
level of 95%. These plots are shown at Figures 7.16 and 7.17.

Finally, at Table 7.1 we also present the average of the peak PSS in each profiling case.
Note that the values on the table deviate a bit from the plots. This is expected since, the
peak PSS on each of the 15 repetitions fell on different timestamps and, on the plots we
took the average PSS value at each chosen X timestamp. In other words, the peak PSS on
the plots is timed-based while the peak PSS on the table is time-independent.

8 We also tried to collect the PSS data without stopping the processes, but that significantly reduced the sam-
ple rate; specially with higher numbers of checkout workers, which start competing with our profiler for
system resources. Stopping the processes also helps increase the sample rate on short-running checkouts.
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PSS memory in Linux v5.12 packed checkout
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Figure 7.16: Memory usage (PSS) on packed checkout of Linux v5.12. Machine Mango - SSD. Each
curve represent the average of 15 executions, plotted with a confidence interval of 95%.
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PSS memory in Linux v5.12 loose checkout
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Figure 7.17: Memory usage (PSS) on loose checkout of Linux v5.12. Machine Mango - SSD. Each curve
represent the average of 15 executions, plotted with a confidence interval of 95%.

Workers | Packed Checkout | Loose Checkout
1 636.10 £ 0.56 17.05 £ 0.82

2 777.62 £ 1.20 55.68 + 0.08

4 863.44 £ 11.99 56.45 + 0.08

8 1168.17 + 4.39 58.12 £ 0.07

16 1372.67 £ 12.75 61.03 £ 0.08

32 1331.62 + 19.65 66.27 £ 0.05

64 1243.71 + 47.79 79.31 £ 0.05

128 1826.53 = 104.15 107.35 £ 0.10

Table 7.1: Peak memory usage (PSS) in MB of a Linux v5.12 checkout on machine Mango. The offsets
show the confidence interval of 95% using a sample size of 15 executions.

As expected, memory usage increases as the number of workers grow, but fortunately
it is way below a linear growth. On the packed case (Figure 7.16), this is probably largely
due to the packfile being mapped as read-only, which allows the pages to be shared among
the multiple processes. On the loose case (Figure 7.17), where there is no intersection
between the memory mappings of the different processes, the explanation might come
from the fact that each mapped object is unmapped right after being checked out, and
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each individual worker process a single blob at a time. Therefore, on the loose case, the
order of simultaneously mapped object files is limited by the number of workers. This also
explains why we see plateaus in the loose checkout plot, at Figure 7.17, and increasing
slopes with no plateaus in the packed case, at Figure 7.16 (as well as the major difference
on peak PSS usage). For packfiles, Git usually only unmaps a window when the total
number of bytes mapped reaches the core.packedGitLimit threshold. (The windows
chosen for unmapping are the ones least recently used.) The default value for this setting
is 32 TiB? on 64 bits systems, which is considered “effectively unlimited”, as mentioned
on the documentation.

Because packfile windows are kept active during checkout, it is possible to run into sit-
uations where Git ends up mapping way more bytes than what is available on the physical
memory. In this case, the system needs to swap-out pages to make room for newly needed
pages, which might impact performance. This can already affect the sequential checkout
mode, but the result will probably be more dramatic on parallel checkout: the different
workers may be concurrently requesting pages that are not on RAM, which can lead to
memory thrashing. This was not the case in our memory benchmarks, as the physical
memory of Mango was sufficient to hold all bytes needed during the Linux checkout (even
though Linux is not a small repository and the benchmarked operation has to load many
objects). However, the memory thrashing possibility is something to keep in mind for
machines with small RAMs and/or when checking out massive repositories, with many
large packfiles, like the Windows repository (HARRY, 2017).

7.3 Current Limitations

Parallel checkout proved to be very efficient on SSDs and over NFS mounts, which was
the main goal of this project. However, it did not produce a significant improvement for
HDDs in most of the testing cases. For this reason, we decided to still use the sequential
mode as the default.

Furthermore, some files are currently not eligible for parallel checkout. As earlier de-
scribed, these are symbolic links and regular files that require external smudge filters,
and the limitation exists to prevent race conditions and avoid breaking non-concurrency
assumptions from external filters. Because of this, repositories that contain many of such
files may not harvest the full potential of parallel checkout. With that said, most reposito-
ries probably have a higher number of regular files without filters than any of those two
other categories.

Finally, all file removals and directory creations are still performed sequentially, so
parallel checkout is not efficient when the operation requires many more of these tasks
than file creations.

? This value was defined in 2017, to fixa git fetch failure. See be4ca29057 (“Increase core.packedGitLimit”,
2017-04-20): https://github.com/git/git/commit/be4ca290570f9173db64ealf925b5b3831c6efed
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7.4 Future Work

It would be interesting if Git could choose its default checkout mode based on what
would bring the best performance for the machine it is running at. This could help many
users on SSD and NFS mounts that might not be aware of the parallel checkout mode
otherwise. This “smart default” selection could be performed in many ways. Some alter-
natives are: 1) Git could try to detect whether the working tree is on an SSD/NFS and auto-
enable parallelism in this case; 2) Git could run a micro-benchmark using both checkout
modes and decide which is best.

Option 2) is interesting as it does not make any assumptions on the file system or envi-
ronment, but implementing it at checkout time would probably add a significant overhead
to the operation. Specially because the benefit of parallel checkout is only noticeable with
a higher number of files.

We tried to work on option 1) for a while, but we quickly found that it is considerably
difficult to detect the file system and storage device types in a portable way. To exemplify
this, see GNUlib’s read_file_system_list()!°, which returns a list of mounted file
systems, but has to use a very large amount of macros and complex conditional code to
be portable.

With that in mind we limited our focus on Linux, which is the system where we had
already verified that parallel checkout produces good results for NFS mounts. The auto-
detection could then be incrementally expanded to other systems in the future as the
community sees fit. However, even after we decided to limit the initial implementation to
Linux, we found many challenges when trying to reliably infer the file system type:

+ statfs():besides being non-POSIX, the Linux Standard Base project (LSB) marked
the library calls to statfs() and fstatfs() as deprecated and suggested using
statvfs() and fstatvfs() instead.

« statvfs():is POSIX but, unfortunately, does not return the file system type.

« getmntent(): the function presents behavior differences among its different libc
implementation: the glibc version unescapes the mount paths, whereas musl leaves
them as they appear on the mount table. Note that it is not possible to know whether
the path is escaped or not just by looking at it. For example, the escaped string “\134”
evaluates to “\”, but if we receive “\134” without knowing that it is escaped, we could
also say that it is the unescaped version of the string “\134134”.

+ libmount: this is an interesting option, but it adds a new dependency to Git, and it
would not make much sense to add this overhead to the build process, packagers,
and users for a small use in Git.

We discarded these options because of their issues for the Git project and, instead,
chose to manually parse the /etc/mtab file, which contains information about the cur-
rently mounted file systems. Historically, /etc/mtab was not the most reliable source
of information as it was managed by userland applications (mount and umount), so it

19 https://github.com/coreutils/gnulib/blob/dd0af10fa597a95ffe5f4f110ef5edefc2f680bc/lib/mountlist.c
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did not work reliably with namespace, containers, and other kernel features. However,
Linux procfs system added the /proc/mounts file, which is managed by the kernel itself
and contains the same information in a more reliable method. Since them, many Linux
distros replaced /etc/mtab with a symbolic link to /proc/mounts. Therefore, reading
/etc/mtab is a relatively good method regarding reliability and portability, as it will
usually be a symlink to the kernel managed /proc/mounts file, but still be useable on
systems that do not provide this file. In this case, we accept somewhat outdated informa-
tion without any risks because this is being used only to drive the decision about whether
to enable parallel checkout or not. That is, in the seldom case of getting unreliable mount
information, we will, at the worst scenario, get a slower checkout; but with no effect on
correctness. Additionally, we chose to use /etc/mtab only when the libc did not provide
the _PATH_MOUNTED which, when defined, should evaluate to the path of the mounts file
as defined in the library.

Finally, we also copied11 the decode_name () function from glibc’s misc/mntent_r.c
file'? to unescape the paths found in the mtab file (this was the behavior that was missing
in musl’s implementation of getmntent()).

t13 t14

We sent the prototype patch set™” to the Git mailing list™*, asking for comments about
the general idea or possibly alternative suggestions. Avar Arnfj6rd Bjarmason replied say-
ing that he was not intrinsically opposed to the approach we have taken, as a stopgap, but
that we should think of a better alternative for the long run. He mentioned that hardcoding
the default value of workers on NFS mounts is probably not a good idea because, being
a protocol, there might be some NFS implementation which does not benefit from paral-
lelism in the same way. Instead, he suggested to take a more sustainable approach which
would work for other file systems and environments, besides producing a better custom
result for each user/machine: using the recently added git maintenance command to
perform background micro-benchmarks from time to time and automatically adjust per-
formance settings with values optimized for the repository. Besides parallel checkout it-
self, he mentioned core.untrackedCache as another example of setting that could take
advantage of such framework. Z£var’s suggestion follows the idea we enunciated earlier,
but it solves the checkout overhead problem by offloading the actual benchmarks to back-
ground processes. Of course this could also produce more noise in the results as the user
might be running other processes that are competing for the system resources. Another
consideration is discoverability: git maintenance is not schedule by default and less
proficient users might not know about the performance benchmarks.

We did not proceed with the fs-detection or micro-benchmarking ideas, but these
would be interesting options for the future of parallel checkout. Other possibilities for

T'The original glibc implementation is licensed under LGPLv2.1, and it can be relicensed in Git to GPLv2, as
seen in https://www.gnu.org/licenses/gpl-faq.html#AllCompatibility

12 https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=misc/mntent_r.c;hb=
75a193b7611bade31a150dfcc528b973e3d46231

3 https://github.com/matheustavares/git/compare/8619b75483df916b63f7ff96b6c7b4e462061cc5...
matheustavares:2e2c787e2a1742fed8c35dba185b7cd208603de9

4 https://lore.kernel.org/git/9c999e38-34db-84bb-3a91-ae2a62b964b5@jeffhostetler.com/t/
#mab5fcf209d1a99646b565472856633de16501022b
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https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=misc/mntent_r.c;hb=75a193b7611bade31a150dfcc528b973e3d46231
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=misc/mntent_r.c;hb=75a193b7611bade31a150dfcc528b973e3d46231
https://github.com/matheustavares/git/compare/8619b75483df916b63f7ff96b6c7b4e462061cc5...matheustavares:2e2c787e2a1742fed8c35dba185b7cd208603de9
https://github.com/matheustavares/git/compare/8619b75483df916b63f7ff96b6c7b4e462061cc5...matheustavares:2e2c787e2a1742fed8c35dba185b7cd208603de9
https://lore.kernel.org/git/9c999e38-34db-84bb-3a91-ae2a62b964b5@jeffhostetler.com/t/#ma5fcf209d1a99646b565472856633de16501022b
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further improvements are:

A Remove files in parallel. This might not make a huge difference on local SSDs,
but it probably does on NFS mounts. The effect would not be seen on our Linux
checkout benchmark, as that operation does not require any file removals, but it
would be interesting for branch switches. Specially those with many more removals
than creations, like checking out the tag v2.6.15 from v5.8 on Linux, which removes
almost four times the number of files it creates.

However, the risk in such optimization is to not handle path collisions properly
or forget to reset the lstat() cache in the parallel processes. To minimize the
danger, it would be better to avoid mixing file creations and deletions on the same
parallel operation. The implementation could also focus on the file removals from
unpack_trees() (i.e. the loop over the CE_WT_REMOVE index entries), although
this would miss the removals at checkout_entry() itself. But even using these
limitations for safety measures, there are still other challenges to overcome: how
to deal with submodules, how to handle path collisions when removing files, and
how to remove the directories that are left empty after all the files within it get
removed (remember that the current code schedule them for removal and check
if they can be removed when switching the dirname, but that would have to be
adapted for a parallel execution).

B Create leading directories in parallel. This also has a great potential for repos-
itories on NFS mounts. We attempted to implement this idea and got promising
results, but we did not pursue it further because our implementation required a few
changes to the lstat() cache code and we were not confident that these would
not open spaces for any potential vulnerabilities like the one we had just fixed.
In particular, we had to make checkout_entry()’s usage of the cache also store
“missing component” data (i.e. when the path is found to be missing on disk). This
information can turn stale easily and we certainly would not want to risk intro-
ducing a bug in this code right after fixing a similar serious problem. Still, it may
be possible to implement this optimization without the cache changes. Our use of
the “missing component” caching was to remove any existing non-directory file in
the dirname of the entry before enqueueing it to allow the workers to create the
directories (or proper detect path collisions during checkout when the path is not
missing anymore).

C Avoid duplicated working tree checks. As mentioned in Section 5.4, there is
some duplicated logic in unpack_trees() and checkout_entry() for the inspec-
tion of working tree files regarding their existence and status. Removing this du-
plication might lead to some improvement, specially on systems where stat() is
more expensive.

D Avoid duplicated 1stat() calls in checkout workers. To make sure the leading
directories created by the main process are still valid (i.e. there was no path collision
which made them disappear), the checkout workers must 1stat () each component
before writing a checkout entry. This process does use the lstat() cache to mini-
mize the number of calls, but perhaps we can avoid all calls by delaying the checkout
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of symbolic links, and only writing them after the workers finish. This way, path
collisions could be detected by a simple open() failure and there would be no risk
of wrongly following symlinks.

E Skip checking working tree on clone. Although the working tree should be
empty on clone, we still need to lstat() each path and all their directory compo-
nents to detect path collisions, avoid following symlinks, and create missing direc-
tories. The parallel workers are already able to detect path collisions by themselves.
If the Items D and B get implemented, it should be possible to entirely skip the
checkout_entry () code, on clone, for entries that are eligible for parallel check-
out.

F Do not stat() entries after checkout when not needed to. Currently, the
checkout workers always stat() the files the have written and send the returned
data to the main process. In some cases, like git checkout-index --prefix, Git
will not update the index after checkout so the stat() information is useless. We
can avoid the function calls and inter process communication costs by communi-
cating that fact to the worker processes.

G Work redistribution. Some index entries may take longer to check out because of
larger blobs or slower filtering. In such cases, it could be interesting to implement
some kind of work redistribution or scheduling, in order to minimize the waiting
time for a potentially slower checkout worker. We tested a scheduling mechanism
on parallel checkout but ended up not including it in the final patches because there
was no significant performance improvements in our tests. However, there may be
cases and repository shapes where it could in fact produce a higher optimization,
so it should be interesting to test this further and acess its value.

7.5 Conclusions

We parallelized the checkout machinery in Git, leading to up to 4.5x speedups on
NFS and 3.6x on SSDs, in a Linux checkout benchmark with packed objects. HDDs did
not benefit as much from parallelism, seeing 1.2x to 2.1x speedups in the same bench-
mark, but also regressions in other cases. The parallel checkout feature was accepted and
merged into the upstream Git project, being released as part of Git 2.32.0 (from Jun 6th,
2021).

The feature was developed in a total of 22 patches, divided into three series. The indi-
vidual commits and the source code can be seen at:

« Part 1: preparatory API changes:
https://github.com/git/git/compare/a5828ae6b52137b913b978e16cd2334482eb4c1f.
..ae22751f9b4bbbebcd0366a48a118b5a575af72d

« Part 2: parallel checkout implementation:
https://github.com/git/git/compare/a0dda6023ed82b927fa205c474654699a5b07a82.
..68e6612987724a639c896e7996ea347be62ef578

« Part 3: parallel checkout tests and extended support to other commands (git


https://github.com/git/git/compare/a5828ae6b52137b913b978e16cd2334482eb4c1f...ae22751f9b4bbbebcd0366a48a118b5a575af72d
https://github.com/git/git/compare/a5828ae6b52137b913b978e16cd2334482eb4c1f...ae22751f9b4bbbebcd0366a48a118b5a575af72d
https://github.com/git/git/compare/a0dda6023ed82b927fa205c474654699a5b07a82...68e66f2987724a639c896e7996ea347be62ef578
https://github.com/git/git/compare/a0dda6023ed82b927fa205c474654699a5b07a82...68e66f2987724a639c896e7996ea347be62ef578
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checkout-index and git checkout <pathspec>):
https://github.com/git/git/compare/68e66f2987724a639c896e7996ea347be62ef578...
87094fc2daa9613c2fad454dbb068a8f23ce8de8

Working in the checkout machinery and looking for issues with the new parallel

framework also allowed us to find two pre-existing bugs related to the lstat() cache.

One of which could be used to drive RCE attacks during the clone of a repository. Both
the bugs were fixed and released to the Git users. More information about them can be
found at the Appendix D.
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Appendix A

Figures A.1, A.2, A.3, and A.4 show the performance profile flamegraphs for the loose
object checkout on different machines, as described on Chapter 3.

Checkout Profile on Mango - SSD (loose objects)
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Figure A.1: Checkout profile flamegraph on machine Mango - SSD (loose objects case).
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Checkout Profile on Cicada - HDD (loose objects)

Figure A.2: Checkout profile flamegraph on machine Cicada - HDD (loose objects case).

Checkout Profile on Wall-e- HDD (loose objects)

Figure A.3: Checkout profile flamegraph on machine Wall-e - HDD (loose objects case).
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Checkout Profile on NFS - EBS gp3 SSD (loose objects)

Figure A.4: Checkout profile flamegraph on NFS - EBS gp3 - SSD (loose objects case).






Appendix B

The unpack_trees() API and
Trivial Merges

The unpack_trees() machinery only performs “trivial merges”, which are tree
merges that can be done without looking into the contents of the referenced blobs. For this
operation, Git only looks at the hashes of the blobs, the index, and the trees themselves.
More complex merging tasks are not handled by the trivial merge routines. For exam-
ple, the merging of files contents and the resolution of conflicts upon content divergece
among multiple trees. Callers of the unpack_trees () APIcan specify which tree merging
function they want to use. A few implement their own to achieve specific purposes, but
most of them use one of these methods: one-way merge, two-way merge, and three-way
merge. There is also the bind merge method, which is used by git read-tree --prefix
to incorporate a tree into the index at a given prefix.

The one-way merge method is used to replace what is currently in the index with a
new tree. This is the case, for example, of git clone, git reset [--hard|--merge],
and git checkout -f <branch>!. A one-way merge replaces the index entries while
taking care to re-use any valid stat() information that was already in the index. Note
that one-way merge discards index modifications relative to the current HEAD tree (after
all, it is a “one”-way merge, and it only sees the target tree). But it refuses to update
any entry whose working tree file is not up to date and entries whose update would
cause the loss of untracked data. This can be overruled with the “reset” flag from struct
unpack_trees_options, which is used e.g. by git reset --hard and git checkout
-f <branch>.

The two-way merge, also referred as “fast-forward”, promotes a “switch” from an
old tree to a new one. Unlike the one-way method, two-way merges carry forward the
changes made in the index relative to the old tree, as long as the entry in the old tree
matches the entry in the new one. To exemplify, if the index contains the file “F” with the
contents “F data”, but “F” is not present in the old tree or the new one, the final index after
the merge will still contain “F” with the contents “F data”. Furthermore, this will also be

1A “git checkout -f [<branch>] -- pathspecs” execution does something similar, but it does not use
the unpack_trees() APIL
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true if “F” is present in both trees and the contents are not “F data”, as long as the entries
from the two trees match. An example where this merging routine is used is during branch
switching with git checkout <branch> (without -f). In this case, the two trees that
are fed to the two-way merge machinery are the tree at the tip of the previously checked
out branch and the one at the target branch’s tip. (A git checkout --orphan=<new-
branch-name> execution, which moves to a new branch with no commits, simply uses
an empty tree as target.) Note that clone uses one-way merge because there is no branch
previously checked out, and both the index and the working tree should be empty.

Finally, the three-way merge (also called a “true merge”) adds an “ancestor” tree to
the operation. This merging operation is used by the merge machinery (git merge, git
checkout -m,etc.), and git read-tree -m when it receives three or more trees.



Appendix C

Machines Used in Tests

Mango

Grenoble

Songbird

Wall-e

Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
Cores: 4
Threads: 8
RAM: 16GiB (2 x 8GiB) SODIMM DDR4 Synchronous 2133 MT/s
SSD: SAMSUNG MZVLB512HAJQ-000L2, PCle NVMe v1.2
- Linux partition: ext4 (rw,noatime)
- Windows partition: NTFS v3.1
OS: Manjaro Linux, kernel 5.4.123-1-MANJARO and Windows 10.0.19042.1466
Processor: Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz
Cores: 4
Threads: 8
RAM: 32GiB (4 x 8GiB) DIMM DDR3 Synchronous 1333 MT/s
SSD: SanDisk SDSSDA 120G, SATA 3.2, ext4 (rw,noatime,nodiratime,discard,errors=remount-
ro)
HDD: Seagate Barracuda 7200.14, ST1000DM003-1ER162, 7200 rpm, SATA 3.1, ext4
(rw,relatime)
OS: Debian 10.0, kernel 4.19.0-9-amd64
Processor: AMD(R) Ryzen(TM) 5 3600 @ 3.60GHz
Cores: 6
Threads: 12
SSD: Corsair Force LE SSD, 1631801800010417114A, SATA 3.1, ext4 (rw,noatime)
RAM: 16 GiB (2 x 8GiB) DIMM DDR4 Synchronous Unbuffered 2400 MT/s
OS: Arch Linux, kernel 5.13.5-arch1-1
Processor: Intel(R) Core(TM) i5-4210U @ 1.70GHz
Cores: 2
Threads: 4

HDD: Seagate Samsung SpinPoint M8, ST1000LM024 HN-M101MBB, 5400 rpm,
SATA 3.0, ext4 (rw,noatime)
RAM: 8 GiB (1 x 8GiB) SODIMM DDR3 Synchronous 1600 MT/s
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Cicada

NFS: AWS EBS gp3

NEFS: Cicada

APPENDIX C

OS: Manjaro Linux, kernel 5.4.123-1-MANJARO

Processor: Intel(R) Core(TM) i5-3317U @ 1.70GHz

Cores: 2

Threads: 4

HDD: Seagate Laptop HDD, ST500LT012-9WS142, 5400 rpm, SATA 2.6

- Linux partition: ext4 (rw,noatime)
- Windows partition: NTFS v3.1

SSD: Phison SSE020GTTC0-S53 (“Caching SSD” of 20 GiB), KN.0200Q.005m, SATA
2.6, ext4 (rw, noatime)

RAM: 6 GiB (1x 4GiB 1x 2GiB) SODIMM DDR3 Synchronous 1333 MT/s

OS: Manjaro Linux, kernel 5.10.42-1-MANJARO and Windows 10.0.19044.1466

NFS v4.1

NFS client on an AWS EC2 c5n.xlarge instance: CPU: Intel(R) Xeon(R) Platinum
8124M @ 3.00GHz (2 cores w/ HT), 10GiB of RAM.

Linux NFS server also on an AWS EC2 instance, using EBS gp3 volume for storage
(SDD), XEFS file system.

NFS v4.1

NFS client on machine “Mango”.

Linux NFS server on machine “Cicada”, with 32 nfsd threads.
Both machines were connected on LAN through Wi-Fi.



Appendix D

Delayed Checkout / Clone
Vulnerability

While working on the parallelization of the checkout machinery, we had to read and
modify adjacent code such as the filtering mechanics. In this processes, we found a vul-
nerability in the delayed checkout feature, which could be used to drive remote code
execution (RCE) attacks during a git clone invocation. The exploit used path collisions
and a misuse of the lstat() cache (as described in Section 4.3) to write arbitrary files
inside the hooks dir, tricking Git to run a malicious script. In this chapter, we will discuss
what caused this vulnerability, how we worked with the Git community to fix it, and how
this interacted with our roadmap to parallelize checkout.

D.1 Unordered Checkouts and Attack Vector

In Section 4.3, we demonstrated why following the index order during checkout pre-
vents the use of outdated information from the 1stat() cache. We also explained how
dangerous it would be to misuse the cache as the checkout machinery could end up trust-
ing that a path is free of symlinks when it is not, leading to the creation of files at the
wrong places. However, as we discovered during this work, the classic checkout machin-
ery already had some problems in this area. Two code paths actually do not follow the
index order when checking out entries: the checkout-index command, which writes the
paths to the working tree at the same order that the user specifies them on the command
line!, and the delayed checkout feature — used by some long-running filter processes like
Git-LFS — which postpones the checkout of some entries, modifying the checkout order.
The second case is the most problematic because it presents a vector for RCE attacks.
However, not all Git users are affected by it. The victim must be using a file system which
performs some kind of path folding (like case-insensitivity) and supports symbolic links.
The user must also have certain smudge filters configured.

Linux typically uses case-sensitive file systems by default, although it is possible

! Note, however, that the user must run a forced checkout (with git checkout-index --force) in order
to see the problematic behavior. Otherwise Git will refuse to replace the colliding files during checkout.

99



100

APPENDIX D

that the user is running Git on external FAT drives or even configured ext4 to be case-
insensitive?. Mac users are more vulnerable as the default file system installation uses a
case-insensitive version of APFS, with support for symlinks. Windows users are also af-
fected, but Git-for-Windows only enables symlink support by default on recent versions
of Windows 10 with Developer Mode enabled’. If that is not the case, the vulnerability
can only be exploited if the user manually turned symlink support on. However, for the
cases where it is enabled by default, the chance of a successful attack is further increased
as Git-for-Windows already comes with Git-LFS configured by default.

The Script D.1 demonstrates how an attacker could use the exploit for an attack. The
attacker crafts a malicious repository containing the following files: .gitattributes,
A/a,A/b,A/post-checkout, and a, which is a symbolic link to . git/hooks. The files will
appear in the given order in the index, but the attacker sets A/post-checkout to require
filtering by Git-LFS. When the victim clones the repository, Git will check out the paths
in the index order, starting with the . gitattributes and then the A/ * files. For each path,
it first checks whether the leading directory already exists using has_dirs_only_path(),
and creates the directory if negative. For A/a, has_dirs_only_path() lstat()s A and
see that it is missing, so Git creates it. For A/b, the function lstat()s A again and this
time sees that there is a directory, so this information is cached. Then Git processes the
A/post-checkout entry, it also checks A is a directory, but instead of creating A/post-
checkout right away, it notices that this entry requires an external smudge filter, so the
blob is passed to Git-LFS, which replies with a “status=delayed”. Git then skips to a.
It removes the directory A and creates the symlink a. Now that all entries have been
processed, Git iterates through the list of delayed entries, asking the filters for the filtered
contents. With the reply from Git-LFS, Git finally proceeds to the creation of A/post-
checkout and, once more, it checks whether A is a real directory. As A is in the cache,
has_dirs_only_path() replies that it is indeed a directory (although this is no longer
true in the file system), and the post-checkout script is written outside the repository’s
working tree. After checkout finishes, Git will invoke the post-checkout hook, allowing
the attackers code to be executed without the victim’s consent.

To fully understand the problem, keep in mind that: 1) the basename of the paths
being checked out is not saved in the Istat cache, even though the checkout machinery
does lstat () it outside the caching functions; and 2) the checkout machinery does not
update the cache when it creates a new directory, it only updates the cache when calling
has_dirs_only_path(). The second clause is the reason why Script D.1 must create two
files inside A/: the checkout of the first file will create the missing directory and the second
will 1stat() A and save it the cache.

D.2 Considered Alternatives and the Final Patch

When I first encountered this issue with invalid uses of the lstat() cache, it was
not clear which commands were affected and whether it could really be used to drive
an attack. So I emailed the Git security mailing list (a private list), presenting the issue

% https://www.collabora.com/news-and-blog/blog/2020/08/27/using-the-linux-kernel-case-insensitive-feature-in-ext4/

* https://github.com/git-for-windows/git/wiki/Symbolic-Links
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Program D.1 Exploit demonstration for CVE-2021-21300. Adapted from https://www.
openwall.com/lists/oss-security/2021/03/09/3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#!/bin/sh

# The attacker
git init malicious-repo &&
(

cd malicious-repo &&

echo "A/post-checkout filter=1fs" >.gitattributes &&

mkdir A &&

touch A/a A/b &&

printf '"#!/bin/sh\n\necho "attack succeeded." >&2\n' >A/post-checkout &&
chmod +x A/post-checkout &&

git add . &&

rm -rf A &&

# We assume the file system of the attacker supports symlinks, but they
# could also craft the repository on a fs without symlinks by directly
# adding “a’ to the dindex with “git hash-object’ and “git update-index’
ln -s .git/hooks a &&
git add a &&
git commit -m initial

) &&

# The victim
git clone malicious-repo cloned

and asking whether people think it could have security implications. Others developers
chimed in and we started to analyze the extent of the problem and how it can affect
users. When it became clearer that it could indeed be used to run RCE attacks in some
machines, it was suggested to require a CVE® number?, so this vulnerability was assigned
the identification CVE-2021-21300.

The root of the problem was that the 1stat() cache got outdated during checkout

with path collisions, and the unordered writes from the delayed checkout ended up using
the outdated information and blindly following symlinks. To fix that, we initially consid-
ered the following ideas:

1. Disable the cache during unordered checkout. The obvious downside is that
this increases the number of 1stat() calls in O(number of entries * number
of leading directories). This could be especially bad for systems where this
function is more expensive.

2. Sort the entries. This ensures that entries from two different directories (at differ-

ent levels) do not get written alternately, so we never use any outdated information

* As CVE’s webpage (https://www.cve.org/About/Overview) describes: “The mission of the CVE® Program
is to identify, define, and catalog publicly disclosed cybersecurity vulnerabilities. There is one CVE Record
for each vulnerability in the catalog. The vulnerabilities are discovered then assigned and published by
organizations from around the world that have partnered with the CVE Program.”
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from the cache. Some disadvantages of this approach are the extra complexity and
the time overhead for sorting the entries. But beyond that, there is no guarantee
about the order in which the blobs finish filtering during delayed checkout. So we
would have to hold some blobs that were already filtered in memory while waiting
for the next in sequence to be ready. Besides the complexity of this change, it could
also negatively impact both performance and memory usage.

3. Detect collisions. This is certainly a robust approach, but it is also an obviously
difficult one. Implementing all the path folding rules for the different file systems
would be impracticable to do both correctly and exhaustively. A more plausible
way could be to inspect the cached component at the same path level of the last
checked out entry (after each entry is written) and make sure it is still a valid
directory.

The idea behind this approach is that only paths with a number of components
equal to or smaller than the cached path can cause collisions that might invalidate
one of the cached components. Furthermore, only the last component of the check-
out path can cause cache invalidations. To visualize that, consider the extreme
case where all components collide: the cached path can be e.g. A/B/C/D and the
checkout path a/b/c. Although the first two components collide, they will not have
their file type changed in the working tree, so only the third and forth components
of the cache need to be dropped in this case. More generally, we would 1stat()
the component at the same path level of the written path and, if it is not a directory,
erase everything from that point on from the cache.

One of the advantages of this approach over the two previous ones is that it
future-proofs the code against new unordered checkout cases that might appear
later. In particular, it would protect the new parallel checkout framework too. On
the other hand, this approach produces and additional number of lstat() calls
proportional to O(number of entries). This might not be that big of a deal in
the end, but it is definitely something to keep in mind.

Considering these three options, I sent the first draft of a possible solution to the
private mailing list. The patch was composed of 69 line additions and 3 deletions, not
including the added regression tests. Its main idea was to implement something along
the lines of the third approach described above, but striving to reduce the number of
lstat() calls on the default ordered checkout case. Since there is no risk of using invalid
cache data in this case, the overhead of the additional 1stat () calls would be completely
unnecessary. So the proposed idea was to avoid the calls and unconditionally invalidate
the cached components starting from the written path’s level downwards. The worst-case
scenario would then be an unordered checkout which alternatively writes paths from two
vertically distant directories. This could effectively produce the same performance result
as not having a cache at all, but its questionable whether this specific case is frequent
enough to justify any concerns.

This idea was discussed in the private list and it got some positive feedback regarding
correctness, but also some concern as to whether it covered all possible cases. The code
to count path components was also not very straightforward. It had to deal with some
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considerations like: 1) The path length of two colliding components are not always the
same. They are certainly the same for pure case-insensitive collision, but not for other
path folding rules, like Unicode normalization. (See for example the two octal represen-
tations of “4”: 0303 0244, and 0141 0314 0210.) 2) The checkout machinery accepts a
prefix string, which it then prepends to each path it is going to check out. This feature is
currently only being used by git checkout-index and git difftool, but in the case
of checkout-index, the string comes directly from the user without being normalized or
converted to an absolute path. So, in this case, the checkout paths may contain artifacts

like double slashes.

Johannes Schindelin, the maintainer of Git-for-Windows and one of the Git contrib-
utors who also worked on this bug, pointed out that the proposed patch was probably
not simple enough for our needs. He explained that, because we where working on this
fix under embargo, it was much easier for the review to miss non-obvious issues such as
uncovered corner cases or even end up adding new bugs and vulnerabilities. Therefore,
we should approach this problem with a simpler and more straightforward fix, seeking
the best possible guarantee that it completely eliminates the bug without introducing new
ones. So, following these requirements, Johannes sent a draft for an easier-to-review and
yet quite robust solution: The vulnerability can only be exploited if a cached component
is replaced by another file; and this can only happen after the said component gets re-
moved from the working tree. So we invalidate the cache whenever we remove a file in
the checkout code.

Regarding performance, some benchmarks showed that the change significantly in-
creased the number of 1stat() calls due to some unnecessary cache invalidations. How-
ever, we easily mitigated that by only dropping the cache on directory removals, which
is the only type of file for which a removal can turn the cache stale on checkout. This so-
lution was already enough to fix the RCE-on-clone attack that we described earlier, and
it indeed passed our newly added tests. However, with further inspection, we noticed
that some users of the checkout machinery perform their own tasks in between calls to
checkout_entry (). If some of these tasks included directory removals, the cache could
became outdated again and end up producing errors on subsequent checkout_entry ()
calls. So, in the interest of covering the maximum extent possible with our fix and also
protecting us against similar-but-not-identical attack vectors, Johannes suggested that
we intercept all Git calls to rmdir () with a wrapper, which would invalidate the cache at
each successful removal. This seemed like the best approach so far in order to keep using
the cache in a safe manner.

To mitigate performance impacts, he suggested using strcasecmp () to decide when
to drop the cache based on whether the removed directory and the cached directory were
the same ignoring case differences. However, this unfortunately would not work for more
general path folding rules that do not rely exclusively on case sensitivity. We also con-
sidered employing the previous idea of comparing the path levels and only dropping the
components which could potentially be affected by a collision with the removed directory,
but this approach would also have its issues: rmdir () may receive relative paths or paths
containing double slashes and backslashes. If we were to do any path comparison among
the argument of rmdir () and the cached path we would have to canonize both of them
first. There is no simple and easy way to direct compare them. Therefore, we decided to
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stick with the original idea of invalidating the cache on all successful directory removals.
At this point, we also revisited some of the benchmarks we had run earlier to see whether
the current solution would bring any issues performance-wise.

From the checkout operations we had previously tested, a switch from tag v5.8 to
v2.6.20 on the Linux repository was one of leaders in terms of the number of lstat()
calls. So we used it as our benchmark to test the performance of the bug fix. The results,
presented in Table D.1, showed that the performance overhead produced by the change
was in fact quite small.

Linux (SSD) Windows 10 (SSD) | NFS v4.1
Original | 5.879 s £ 0.108 s | 31.776 s £ 0.531 s 124.673 s + 3.032 s
Patched | 59115+ 0.099s | 32.516 s £ 0.596 s 126.396 s + 2.896 s

Table D.1: Time comparison between original checkout and patched version with the RCE-on-clone
fix. Mean times and standard deviations for 15 repetitions of a “branch” switch from tag v2.6.20 to tag
v5.8 on the Linux repository.

As the patch was getting into a mature state, we continued inspecting the code and
looking for corner cases or additional issues we had not seen yet. This lead us to another
finding: the checkout machinery might spawn child processes to check out submodules,
and those process can also remove directories. Since the rmd+ir () wrapper will only clean
the Istat cache from the calling process, this can make the main process’ Istat cache go
stale. With further inspection, we ended up founding a case of path collision between a
submodule and a regular file which could indeed lead to an invalid cache state and a sub-
sequent file creation at a wrong place®. However, this problem was quite straightforward
to solve: for each submodule that has to be checked out, the main Git process waits for its
spawned child to finish before it continues to the next index entry. Furthermore, the child
processes start with a clean Istat cache, so they cannot carry any possibly invalid state
from the main process. Therefore, to fix the issue, we just had to invalidate the Istat cache
whenever a subprocess finishes. Note that, unlike the rmd+ir () wrapper which only drops
the cache when the operation was successful, this time we invalidate the cache regardless
of the exit status from the child process, as it can still have removed directories even if it
later failed and returned an error code.

We also had to consider parallel checkout itself. However, as we discussed in Section
6.2.2, our parallel workers could not make the main process lstat() cache stale as nei-
ther they nor the main process remove any directory for the whole duration of the parallel
execution. The workers’ caches also cannot be find at a stale state for the same reason.
Besides, the workers start with a clean cache (just like the child processes created to check
out submodules), so no previous collision during the sequential phase could affect their
caches. The only case we had to be more cautious about was the unordered checkout of
entries by the main process itself. That is, either when it decides to fallback to sequential
checkout and has to sequentially write the entries that were enqueued for parallel check-
out, or when it has to process entries which collided during parallel checkout. In these

>See this test case: https://github.com/git/git/blob/0d58fef58a6f382bald35f47a01ch55d8976335f/t/
t0021-conversion.sh#L865
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cases, the main process could break the ordered checkout premise while having a stale
lstat() cache. However, the general solution proposed here (i.e. resetting the cache on
rmdir () and after a child process finishes) already cover these two cases as well.

Finally, as Git commands may perform their own tasks before using the checkout
machinery, we decided to invalidate the cache in unpack_trees (), as well, before it starts
to check out the index entries. This ensure that the respective code starts with a clean
(and, thus, valid) cache. Putting it all together, the final version of the vulnerability fix
was composed of three patches:

+ checkout: fix bug that makes checkout follow symlinks in leading path
https://github.com/git/git/commit/684dd4c2b414bcf648505e74498a608f28de4592

« run-command: invalidate Istat cache after a command finished
https://github.com/git/git/commit/0d58fef58a6f382ba1d35f47a01cb55d8976335f

« unpack_trees(): start with a fresh Istat cache
https://github.com/git/git/commit/22539ec3b5e678c054ab361a37a7cdcc64cal228

On March 9th, the Git project released® the maintenance version v2.30.2 containing
these three patches, together with releases for older maintenance tracks from v2.17.6 to
v2.29.3. A security advisory was also published on Git’s fork at GitHub” and GitHub itself
published a post® in its own blog announcing the release and further instructions on how
to reduce the risk of an attack on machines that could not be upgraded immediately.

D.3 Checkout Following Symlinks on File
Removal

While working on the delayed checkout vulnerability, I found another bug related
to an erroneous use of the Istat cache on checkout. This did not seem as serious as the
first one regarding security, but I sent it to the private mailing list first, just to be sure.
Johannes Schindelin, who also worked on the fix for the delayed checkout vulnerability,
replied confirming that he did not think the bug was exploitable for an attack, so we could
hold off the patch until the security fix was released and then send it to the public mailing
list for review.

The problem existed since 2011, when the returning code for one of the functions
accessing the lstat() cache changed but one of its callers in the checkout code was not
adjusted to handle this change. The checkout function is unlink_entry (), responsible
for removing tracked files that were part of the index but should no longer be. As described
in Section 2.5.1, this function first checks whether the leading directories of the file are
real directories, then remove the file. The first part is done using check_leading_path(),
which uses the 1stat () cache to store three types of data: symlinks, directories, and “no

® https://lore.kernel.org/git/xmqqim6019yd.fsf@gitster.c.googlers.com/
7 https://github.com/git/git/security/advisories/ GHSA-8prw-h3cq-mghm
® https://github.blog/2021-03-09-git-clone-vulnerability-announced/
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entry”. Regarding the latter, if the cached path at a given moment is A/B/C, and the track-
ing flags say this path is a “no entry”, then we know A and A/B are both real directories,
but A/B/C is missing on the file system.

Until 2011, check_leading_path () used to return: 0 if the given path had a symlink
or missing component at its dirname; -1 if all leading components were real existing di-
rectories; or the length of a component if it was found to exist but neither as a directory
nor a symlink. However, the patch 1d718a5108 (' “do not overwrite untracked
symlinks'', 2011-02-20) adjusted this function to only return 0 for “missing entries”,
so the symlink case was combined with the third case, i.e. the return code being a path
length. Since unlink_entry () was not adjusted for this change, it started to follow sym-
links when removing the entries instead of aborting. This only happens, of course, for
symlinks that are in place of the leading directory of a tracked path, and only during
forced checkouts. Script D.2 showcases how this bug could be triggered (before Git v2.32.0,
when it was fixed).

The fix for this bug was in fact quite simple: we only had to adjust unlink_entry ()
for the new return code of its changed callee while taking care to properly display any
necessary warning messages for the users. The patch was sent in March 2021, after the
delayed checkout fix was out, and it was merged ° and released as part of Git v2.32.0,
together with another patch ! to update outdated comments in the same part of the
code.

Program D.2 Bug demonstration: checkout following symlinks when removing tracked
entries (fixed in Git v2.32.0).

1 #!/bin/sh

2

3 git init test-repo &&

4

5 cd test-repo &&

6

7 mkdir dir &&

8 touch dir/file &&

9 git add dir/file &&

10 git commit -m "add dir/file" &&
11 mv dir untracked-dir &&

12 1n -s untracked-dir dir &&

13 git checkout -f HEAD~

14 # Note that untracked-dir/file got remove
15 )

? https://github.com/git/git/commit/fab78a0c3defddff87ea5aa7dd32c5e444c43f1f
19 https://github.com/git/git/commit/462b4e8dfd688b8964da77daf17b64dasbdc54ad
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Additional Benchmarks

At Chapter 7, we saw how parallel checkout performs on a full checkout of the Linux
repository (for local file systems on SSD and HDD), and the Git repository (for NES). As
mentioned earlier, this is an interesting operation for us because it involves many file cre-
ations, which is the main focus of the parallel checkout feature at the moment. However,
it is more common for day-to-day checkout operations to also require file removals and
other non-parallelized tasks such as tree merging and index manipulations. So, in this
chapter, we will take a look at parallel checkout performance numbers for a few other
operations that use some of these mechanics.

E.1 Local File System

For the local HDD and SSD tests, we executed five checkout-related operations in the
Linux repository, with different workloads. Because we needed different Linux tags, we
only used the repository with the packed objects on these tests. The selected operations
were:

« Checkout I: a switch from tag v4.0 to v5.12.

« Checkout II: a switch from tag v5.12 to v4.0.

Checkout III: a switch from tag v5.12 to v5.11.

Checkout IV: a switch from tag v5.12-rc7 to v5.12-rc8.

« Stash:a git stash push --include-untracked execution, after moving Linux
“Documentation” directory to “docs”.

To better explain the last operation, a git stash push stashes away the changes
from a dirty working tree (without affecting the current HEAD) and then resets the files
to their original contents. By default the operation is limited to tracked files, but with the
-—include-untracked option, we instruct Git to store (and clean) the untracked files
as well. For the purposes of this work, we can think of this operation as three different
phases: we start by creating the objects for the dirty files and updating the stash reference;
then git cleanis called to remove the untracked files; and finally, git reset is called to
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restore the tracked files that were dirty. Only this last part is actually able to use parallel
checkout at the moment. Furthermore, to be consistent, we removed the objects created
by git stash after each execution, so that the next one would not be able to reuse those
objects and skip the creation.

Table E.1 shows what is the difference in the working tree state before and after
each one of the benchmarked operations, regarding the number of created, removed, and
modified files. These numbers were collected with git diff-tree --name-status -r
<from> <to>, except for the stash command, which we used git ls-files Documenta-
tion | wc -T1.Note that these numbers only include regular files and symlinks, not the
leading directories that Git had to create/remove as well. We also do not include additional
files handled during the operations, like the object files created on stash. Finally, remem-
ber that the checkout machinery handles “modified files” in two steps: first it removes
the old file, then it checks out the new one. So we could further summarize this table by
removing the “modified” row and summing it onto the other two.

Checkout I Checkout I Checkout III | Checkout IV Stash
C | 36524 (43.68%) | 13980 (16.72%) | 721 ( 5.96%) 0 (00.0%) | 7631 (50.00%)
M | 33119 (39.61%) | 33119 (39.61%) | 10438 (86.24%) | 159 (100.00%) 0 (00.0%)
R | 13980 (16.72%) | 36524 (43.68%) | 945 ( 7.81%) 0 (00.0%) | 7631 (50.00%)
Sum 83623 83623 12104 159 15262

Table E.1: Differences produced in the Linux working tree by each of the benchmarked operations (in
number of files). C, M, and R, respectively correspond to “created files”, “modified files”, and “removed

files”.

Figure E.1, shows the results on machine Mango (SSD) and Figure E.2 shows the re-
sults on machine Cicada (HDD), both running Linux. All values correspond to the aver-
age run time and confidence interval for a set of 15 samples using a confidence level of
95%. On the SSD, parallel checkout was able to reduce the run time for all benchmarked
operations (Figure E.1). However, the most significant speedups only appear on the oper-
ations with higher file creation workloads, which is expected. The best results came from
Checkout I (Figure E.1a), with a speedup just above 1.9x. On the HDD, parallel checkout
only performed marginally better than the sequential mode on Checkout III (Figure E.2c)
and Checkout IV (Figure E.2d). But its overall performance was slower than sequential
checkout on spinning disks.

E.2 Network File System

For the NFS tests, we once again used the Git repository as testing data because the
previous benchmarks using Linux were taking too long to execute. So we selected five
new operations to benchmark, trying to match the workloads from the ones we used on
the local file system tests:

+ Checkout I-git: a switch from tag v1.9.0 to v2.32.0.

+ Checkout II-git: a switch from tag v2.32.0 to v1.9.0.
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Figure E.1: Additional benchmarks on machine Mango - SSD.
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+ Checkout III-git: a switch from tag v2.32.0 to v2.31.0.
+ Checkout I'V-git: a switch from tag v2.32.0-rc0 to v2.32.0-rc3.

« Stash-git:a git stash push --include-untracked execution, after moving Git
“Documentation/RelNotes” directory to “Documentation/release-notes”.

Table E.2 shows the differences produced in the Git working tree for each of these op-
erations. Since not all of these operations meet the minimum number of files to trigger par-
allel checkout (i.e. 100), we ran these tests with checkout.thresholdForParalellism
set to zero. (We set the threshold to zero on the local benchmarks as well, although the
workloads there were already above the default threshold.)

The results on the NFS Cicada setup, using both the SSD and the HDD, are respectively
show at Figures E.3 and E.4. Once again, these values show the average run time and
confidence interval for 15 samples, using a confidence level of 95%. Like we observed on
the local SSD tests, from Figure E.1, parallel checkout was able to reduce the run time for
all benchmarked operations on the NFS. However, the more significant improvements are
seen at the first tree operations, which have higher file creation workloads. On the SSD-
based NFS setup, the best result comes from Checkout I (Figure E.3a), with a speedup of
2.19x. On the HDD-based NFS setup, the best result comes from checkout III (Figure E.4c),
with a speedup of 1.99x — just below checkout I (Figure E.4a), with its 1.98x speedup.

Based on some quick experiments and prototypes, we believe that both NFS setups
could see even higher speedups on these operations if we were to perform file removals
and directory creations in parallel as well. However, this task involves extra complex-
ity and it comes with its risks. We would have to be extra careful in coordinating the
removals and creations (i.e. possibly performing them in two separate phases), to avoid
race conditions in case of path collisions. Furthermore, files can be removed in different
places inside the checkout machinery, so to support them all, some amount of refactoring
and/or a work queue implementation would be required. Finally, the directory creation
step uses the lstat () cache. Any changes in it should be done with plenty of care to avoid
re-introducing the vulnerability we had found during this work, or other similar bugs. For
these reasons, we left these two additional optimizations out of the main parallel checkout
series.

Checkout I-git | Checkout II-git | Checkout III-git | Checkout IV-git Stash-git
C 1609 (47.59%) 283 (8.37%) 447 (86.29%) 0 (0.00%) | 410 (50.00%)
M 1489 (44.04%) | 1489 (44.04%) 64 (12.36%) 57 (100.00%) 0 (0.00%)
R 283 (8.37%) | 1609 (47.59%) 7 (1.35%) 0 (0.00%) | 410 (50.00%)
Sum 3381 3381 518 57 820

Table E.2: Differences produced in the Linux working tree by each of the benchmarked operations (in
number of files). C, M, and R, respectively correspond to “created files”, “modified files”, and “removed

files”
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E.3 Addendum for Cicada’s Caching SSD

At Chapter 7, we mentioned that machine Cicada has a caching SSD which we took
advantage of for the NFS tests, despite the fact that is was not designed for general storage.
The more curious reader might also be interested in seeing how parallel checkout behaves
in this SSD when it is used as a local storage. So we repeated the git checkout . bench-
mark on machine Cicada, using the caching SSD as a local ext4 file system. Results are
shown in Figure E.5. This time we took 15 samples for the packed objects checkout, but
45 samples for the loose objects checkout (in the hopes that it would reduce the variance
observed in this case).

Machine Cicada - SSD (linux repo)

Packed Objects Loose Objects
59.0 142.7
] 136.4
60 140-
507 120
] 100+
@40
() 80-
£ 30
. 601 52.1 51.5

40

20+

0 i
workers

4 8 16 32 64 4 8 16 32 64

Figure E.5: Checkout benchmark on machine Cicada - “Caching” SSD

As the figure shows, parallel checkout was still able to reduce the run time in this
caching SSD, but the overall behavior was quite different from what we saw in the other
SSDs at Chapter 7. Besides the higher variance, we see a weird elevation around 4~8 work-
ers. Nevertheless, we must highlight once again, that we are stretching the functionality
of this SSD by using it in a way it was not designed for. Thus, this results are shown
merely for the sake of curiosity and completeness.
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